维生素E的工业合成由主环2,3, 6-三甲基氢醌和侧链植物醇或异植物醇缩合而成。侧链的综述,国内已有报道”。因此本文就主环方面国内外近年来的进展,作- -扼要的叙述。三甲基氢醌的制备方法一种廉价的制备三甲基对苯二酚方法,该方法不存在废催化剂处理问题,主要包括以下步骤:(1)在酸催化剂存在下使异佛尔酮反应,并通过蒸馏回收β-异佛尔酮,(2)在无定形碳和碱的存在下氧化β-异佛尔酮,得到4-氧代异佛尔酮,(3)在固体酸催化剂存在下,使4-氧代异佛尔酮与酸酐在液相中或与羧酸在气相中反应,得到三甲基氢醌,(4)水解三甲基氢醌,得到三甲基氢醌。人工合成工艺因其原料易得、工艺相对简单、转化率高等优点获得了广泛应用。郑州三甲基氢醌生产企业
第三代催化剂为多相催化剂,是目前研究的热点。自2003年以来,许多研究小组开始研究这类新型催化剂,在提高催化剂稳定性、重复性、延缓催化剂中毒等方面做了大量工作。研制了以Ti掺杂的微孔沸石TS-I催化剂。当催化剂中Ti的质量分数为1.7~6.5%时,TMP的转化率达到98%。此类催化剂便于同产品分离且易于回收,但也有不足之处,即反应物在催化剂的孔道内扩散较慢,产物易滞留在微孔内而使催化剂钝化,减弱其活性。随后出现的大量介孔Ti-S分子筛,如Ti-MCM-4)Ti-SBA-15,Ti-MMM-n,TO2-SiO2气凝胶等,有效改善了微孔沸石催化剂孔道扩散慢且易滞留的问题,提高了催化剂的活性。西安三甲基氢醌应用即使是小量该产品渗入地下水也会对饮用水造成危害,对水中有机物质有毒。
随后,分别以甲酸,乙酸,三氟乙酸以及乙酸酐等作为溶剂(在反应过程中能与过氧化氢反应生成过氧有机酸),以过氧化氢做氧化剂进行实验,确定了甲酸-过氧化氢体系在催化氧化TMB过程中的优势。研究了硫酸和甲酸钠在甲酸-过氧化氢体系中对TMB催化氧化的影响,揭示了在该体系中TMBQ选择性下降的主要原因,即原料的的过度氧化,通过调节氧化剂浓度,反应温度,氧化剂与反应物摩尔比以及氧化剂加入方式等手段对该体系催化氧化过程进行了优化。当反应温度为37℃时,TMBQ的较大收率为28%;当反应温度为27℃时,选择性为72%。在该反应体系中还生成了三甲基氢醌(TMHQ)。结合GC-FID,GC-MS以及HPLC分析结果对TMB在该体系中的氧化机理进行了讨论,对TMBQ和TMHQ的形成机理进行了详细讨论。
通过对三甲基氢醌催化剂的各种表征和再生研究,认为催化剂再利用过程中Pd/C的失活是由于TMHQ和TMBQ的沉积所致。并讨论了可能的催化加氢机理。2,3,5-三甲基对苯二酚(TMHQ)是合成维生素E的关键中间体之一。维生素E具有许多生物学功能,例如酶活性、基因表达和神经功能。其中,维生素E作为抗氧化剂和细胞信号传导的功能是较重要和被人所熟知的。近年来,TMHQ对合成维生素E的生产需求很大。为了更好的完成实验,研究了制备TMHQ的各种合成路线。维生素 E 是通过三甲基氢醌(主环)与异植物醇缩合而成的。
三甲基氢醌非金属催化体系是采用N羟基邻苯-甲酰亚胺及其类似物和其他有机组催化剂结合的共催化体系。反应可以在温和的条件下进行,反应脚料低,具有良好的转化率和选择性,同时催化剂还可以回收和重复使用。a异佛尔酮氧化:与B异佛尔酮相比较,a异佛尔酮结构中存在烯醇共轭体系,稳定性高,反应活性低,直接催化氧化合成氧代异佛尔酮比较困难。到目前为止,a.异佛尔酮的催化氧化按照催化体系不同,可以分为两大类:均相催化体系和多相催化体系。维生素E可以作为工业抗氧剂、聚烯烃中无毒、可生物降解的稳定剂等。济南三甲基氢醌的生产工艺
白色或类白色晶体,受热升华、受潮易变黑。郑州三甲基氢醌生产企业
三甲基氢醌用途:该品是维生素E的主环,与异植物醇缩合得到维生素E。包装:25KG/桶,纸板桶。中文名称:三甲基氢醌;分子式:C9H12O2;物化性质:白色或类白色晶体,受热升华、受潮易变黑。微溶于水,易溶于乙酯、甲醇、不溶于石油醚。熔点:168.5~170.2℃。产品贮运:贮存于阴凉、干燥处。按二类危险品进行运输。白色或类白色晶体,受热升华、受潮易变黑。微溶于水,易溶于乙酯、甲醇、不溶于石油醚。中文名称:三甲基氢醌;分子式:C9H12O2;物化性质:白色或类白色晶体,受热升华、受潮易变黑。郑州三甲基氢醌生产企业