在典型的三甲基氢醌方法中,将LBA(300mL),TMBQ(30g)和Pd/C催化剂(0.71g)加入KCFD05-10高压釜中,并在室温下用氢气(0.3MPa)反复吹扫。通过控制内部盘管中的加热速率和冷却水的流速,将反应温度保持在90℃,搅拌速度控制在800rpm,并通过间歇地供应氢气来控制氢气压力在0.5和0.6MPa之间。当氢气压力在没有供应氢气的情况下保持不变10min时,认为反应已经完成。将反应混合物在90℃下保温30min后,过滤以除去催化剂。将滤液在180℃下蒸馏除去70-80%的溶剂,然后加入120g水。以三甲基氢醌10为原料,经常规的保护基修饰得到单保护酚57。江苏三甲基氢醌阻聚
将原料异佛尔酮氧化得到氧代异佛尔酮,然后氧代异佛尔酮酰化重排得到三甲基氢醌二酯,再将三甲基氢醌二=酯水解即得三甲基氢醌。首先将原料异佛尔酮转变成异佛尔酮的烯醇异构体酯化物,然后异佛尔酮的烯醇异构体转变成酮代异佛尔酮的单酯化物,再将酮代异佛尔酮的单酯化物转变成二酯化物,接着水解即得三甲基氢醌。三甲基氢醌的合成路线:三甲基苯醌路线合成三甲基氢醌,根据原料以及反应中间产物的种类,可将TMBQ的生产工艺分为三大类,即偏三甲苯法(TMB)、均三甲酚法、2.3,6三甲基苯酚(TMP)法。杭州药用三甲基氢醌三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)为白色或类白色晶体。
电解后的阴极液为粗产品,之后按常规方法结晶、提纯即可得TMHQ产品。此工艺过程简单,产品收率在80%以上,产品纯度达98%,电流效率可达到90%,但具体原理尚待进一步研究。间甲酚甲基化法:此工艺以间甲酚为原料,经甲基化后制得TMP,然后再经氧化、还原制得TMHQ(Scheme6),目前国外大公司普遍采用此工艺路线。在固定床反应器中,间甲酚在硝酸铬和硝酸钾等催化剂作用下甲基化生成TMP,转化率达98%,选择性达95%。然后TMP发生氧化反应生成TMBQ,再还原得到TMHQ。以间甲酚计,TMHQ的总收率为75%。该工艺技术含量高,副反应少,污染小,易于工业化,在一定程度上解决了偏三甲酚来源不足的问题。
在三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)的汽油(或石油醚)溶液中,搅拌下加入保险粉溶液,室温搅拌3h,过滤,滤饼用0.5%保险粉溶液洗涤,干燥,得三甲基对苯二酚。用途:该品是维生素E的主环,与异植物醇缩合得到维生素E。也可用于其他有机合成中间体。三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)为白色或类白色晶体,是工业合成维生素E的重要中间体,可与异植醇缩合生产维生素E。白色或类白色晶体,受热升华、受潮易变黑。微溶于水,易溶于乙酯、甲醇、不溶于石油醚。三甲基氢醌(TMHQ)为主环,与侧链C异植物醇在硫酸作缩合剂条件下,经过在乙酸乙酯中加热缩合可制得维生素E。
在重排和酰化过程中,三甲基氢醌传统的催化剂是路易斯酸和布氏酸,如HF、三氟甲基磺酸、氯磺酸、多磷酸、发烟硫酸以及这些酸的混合物。在此类质子酸的存在下发生重排酰化,从而制取TMHQ。此类催化剂优点是反应活性很高,缺点是腐蚀性太强,易形成酸气流,且在中和反应后会有大量的盐生成,不利于产品提纯和净化。固体酸因其不易腐蚀设备,且反应后容易分离回收,因而受到普遍关注。研究较多的固体酸催化剂是铟盐,选择三价铟盐,如InC];以及全氟化的磺酸树脂。此类催化剂具有和硫酸--样高的活性,可使原料转化率达到100%但不耐高温,稳定性较弱,不便于重复利用。偏三甲苯直接氧化法与电解法同为两步反应。江苏三甲基氢醌阻聚
三甲基氢醌等张比容(90.2K):350.2。江苏三甲基氢醌阻聚
甲醇作为溶剂的使用,往往使三甲基氢醌更容易着色,这直接影响到TMHQ的质量。同时,由于甲醇与水的混溶性,很难再利用。雷尼镍对三甲基氢醌的另一个催化加氢过程是以甲基叔丁基醚为溶剂,但是其闪点低,且具有炸裂性。本研究以工业级乙酸正丁酯、乙酸丙酯、正丁醚混合溶剂LBA(乙酸正丁酯,乙酸丙酯和丁醚的商业混合溶剂)为溶剂,采用Pd/C催化剂,开发出一种高效的TMHQ生产工艺。溶剂效应研究表明,LBA是TMBQ催化加氢反应的优良溶剂。对反应参数进行了优化,得到了高产率、高选择性的TMHQ。同时,提出了加氢机理。江苏三甲基氢醌阻聚