数量的上升,防腐蚀的重要性也越来越突出。据相关统计数据显示,在世界范围内每年因为腐蚀造成的经济损失在7000亿美元以上,我国每年因为腐蚀带来的经济损失也在8000亿元人民币以上。由此可以看出防腐蚀的重要性。而石墨烯作为一种新型的材料,在防腐蚀性能上表现较为优异,也常常被用作防腐橡胶。当前较为常见的应用是在环氧防腐橡胶中添加适量的石墨烯,制作成为一种新的防腐橡胶。其表现出来的性能不仅具有传统环氧防腐橡胶中的阴极保护作用,而且在耐水性、耐硬度等方面更高,使得**终表现出来的防腐蚀性能远超出传统的防腐橡胶。可应用于电机、变压器、电力电缆、电气柜、新能源汽车、风力发电、电触头材料等领域。山西石墨烯复合材料研发
GO的二维纳米材料属性:纳米厚度、微米级平面尺寸从而具有极高的比表面积;高氧化程度GO的非晶态特征,使其能作为良好的2D模板,应用于制备纳米复合材料.2016年Huang[84]等人发明了一种自下而上的方法来制备类石墨烯二维Al2O3纳米片.在这种方法中,GO被用作2D模板,硫酸铝与氢氧化铝的共沉淀物(BAS)首先沉积到GO片上,形成的GO-Al复合板煅烧除去GO,转换成二维Al2O3纳米片,示意图如图8(a)所示.GO的非晶态特征使BAS能均匀地涂布在GO片上,而BAS的缓慢稳定的分解保证了二维形状的完整性.所制备的γ-Al2O3纳米片作为吸附剂去除水中氟离子,吸附速度快,吸附容量大,而且在催化、环境、心理科学和复合材料方面得到广泛应用.。 常州导电石墨烯复合材料有哪些可用于注射和挤出成型制件,尤其适用于煤炭、矿井以及石油天然气运输等领域的管材制件。
不同高聚物间的共混可明显提升其各种物理性能,具有广阔的使用范围。通过改变聚合物的类型和组分的配比来调控聚合物共混物的性能,可以综合利用各组分的性能,是一种非常有效和经济的方法,从而满足特定要求73,74。然而,简单的聚合物共混往往并不能满足性能要求,因为两种不相容的高聚物共混特别是混合焓比较大的共混胶,会发生明显的相分离75。研究表明,GO表面具有疏水性基面和亲水性边缘74,76。这种两亲性使其与极性或非极性聚合物发生都能有效地相互作用,从而可以作为聚合物共混的融合剂77-79。例如,Cao等65采用GO来増容聚乙酰胺/聚苯醚(***PO,90/10)聚合物共混物,发现分散相(PPO)液滴直径可减小1个数量级,表明***PO共混物的相容性得到了提高。
太阳能电池或光伏电池可以将太阳能直接转化为电能。光伏装置通常由阳极、阴极和之间的活性材料层组成,其中阴极是透明的,以便阳光能够通过。目前,其商业应用的关键在于提高功率转换效率(PCE),同时通过开发高性能的活性层和电极材料来降低成本。石墨烯是碳原子以sp2杂化形成的独特蜂窝巢状的二维晶体,单层石墨烯的厚度只有0.334 nm,其比表面积高达2600 m2/g[92],室温下电子迁移率约为20000 cm2·V·s-1[93],力学强度高达1060 GPa,单层吸光率只有2.3%[94]。石墨烯独特的光电性质,使其及衍生材料被广泛应用于透明电极[95]、对电极[96]、和电荷传输层[92]等结构。常州第六元素拥有石墨烯微片的缺陷修复/比表面可控技术。
随着人类对能源与日俱增的需求,寻找清洁能源是当代科学的研究发展方向。石墨烯作为一种二维碳材料,凭借其独特的物理化学性质,在新能源研究及实际生产中得到了广泛的关注,为能源领域的不断发展提供了无限潜力。氧化石墨烯是石墨烯的一种衍生物,其中大量的含氧官能团使其成为石墨烯功能化应用的重要物质,氧化石墨烯及其复合物在锂离子电池、超级电容器、燃料电池、太阳能电池等领域有了越来越多的发展和应用,促进了新能源领域的快速进步,对提高能源的利用效率、节能减排及环境保护意义重大。石墨烯导热性能优异,可制备导热复合材料、散热涂料等。上海导热石墨烯复合材料图片
高导电石墨烯铜复合材料的电导率可以达到108-118 % IACS,高于单晶铜和银的电导率。山西石墨烯复合材料研发
由于石墨烯独特的电子结构及良好的导电性,因此石墨烯很有可能成为组成纳米电子器件的比较好材料。目前研究**为***也是**热门的课题之一就是制备基于石墨烯的透明导电薄膜以代替昂贵的氧化铟锡(ITO)电极。由于氧化石墨烯可大规模生产并且可加工性极好,所以以氧化石墨烯为原料制备石墨烯透明导电薄膜是一种重要的制备手段。在这种方法中,首先通过旋涂、浸涂、真空抽滤、LB组装等方法做成氧化石墨烯薄膜,再通过化学还原或者热还原的方法将氧化石墨烯薄膜还原成为石墨烯薄膜[116]。科学家们也开发出了其他一些利用石墨烯或者还原石墨烯的分散液制备透明导电薄膜的方法。比如,Li等人在还原氧化石墨烯之前先将体系的pH值调至10得到稳定的石墨烯分散液,再通过喷涂的方法得到了透明导电薄膜[99]。Dai课题组用―热膨胀-插层-剥离‖得到的石墨烯分散液为原料,利用LB组装的方法得到了石墨烯透明导电薄膜,这种薄膜的薄膜电阻为8kΩ/sq,而可见光区的透过率为83%[113]。Biswas等人利用在水/氯仿这种二元体系的界面自组装的方法得到了电阻为100Ω/sq,可见光透过率为70%的导电薄膜[117]。Coleman课题组将在有机溶剂中直接超声剥离的石墨烯进行抽滤成膜,得到了电阻约为3kΩ/sq。 山西石墨烯复合材料研发