企业商机
储能基本参数
  • 品牌
  • 瑞田
  • 型号
  • 1
储能企业商机

    其指明存在特征、步骤、操作、器件、组件和/或它们的组合。实施例一在一个或多个实施例中,公开了一种储能系统,如图1和图2所示,包括:1套并联/并网控制柜和多套储能变流器(pcs),储能变流器数量为n,n大于1。其中并联/并网控制柜有n+2个端口,n个端口并联连接储能变流器,1个并网端口,1个离网端口(负荷端口);在一些实施方式中,也可以留有柴油发电机后备端口;如留有柴油发电机后备端口,并网/联控制柜内应配置旁路开关。旁路开关设置在柴油发电机和负荷之间,当电网发生故障,负荷不能再从电网获取能量时,系统不能满足如何需求时,闭合旁路开关,柴油发电机投入运行,维持离网运行能量平衡。并联/并网控制柜并网端口连接电网,负荷端口连接负荷。并联/网控制柜并网端口和负荷端口之间设置旁路开关,电网可直接给负荷供电。并联/网控制柜并网端口和电网之间除并网开关外,串联有晶闸管开关,以实现并离网的快速转换。并联的各储能变流器分别设置分流系数,要求均分负载时分流系数均设置为1,或相等。并联/并网控制柜接收用户或能量管理系统指令,选择工作模式。并联/并网控制柜采集电网、负荷电压、电流等信息,进行故障或异常判断,根据确定策略选择保护方式或告警。并对单个储能电池侧向进行抽风散热。杭州三元锂储能电池

    通过比例积分控制输出脉宽调制系数d轴分量和q轴分量;根据脉宽调制系数d轴分量和q轴分量以及pwm算法进行调制,生成驱动信号。在另一些实施方式中,采用如下技术方案:一种储能系统的控制方法,包括:并网或并联控制柜工作在并联模式时,所述的并网或并联控制柜被配置为实现以下过程:根据采集到的并联点电压、电流信息,通过电流电压幅值计算、锁相计算和pi运算,得到电流幅值参考值和参考电流频率;将得到的电流幅值参考值和参考电流频率分别发送给并联的每一个储能变流器;各储能变流器分别采集其各自的输出电流,进行电流幅值计算得到反馈电流幅值;将反馈电流幅值与电流幅值参考值进行pi运算得到脉宽调制系数;根据脉宽调制系数和参考电流频率生成驱动信号驱动相应的储能变流器开关管的导通和关断。进一步地,根据采集到的并联点电压、电流信息,进行电压和电流幅值计算得到电压幅值和电流幅值,对电压进行锁相,得到并网点的频率;将到电压幅值与电压幅值参考值进行pi运算,得到总电流幅值参考,然后与检测得到的总电流进行pi运算,得到各并联变流器的电流参考;根据频率参考值和并网点的频率进行pi运算,得到参考电流频率。在另一些实施方式中。深圳电动车储能电池厂家进一步的,所述散热翅片组包含若干板状的散热翅片。

    因此系统可自动均分负载,当并联的储能变流器数量发生变化时,系统也可自动对功率进行重新分配。实施例三在一个或多个实施例中,公开了一种储能系统的控制方法,参照图7,并网或并联控制柜工作在并联模式时,具体包括如下过程:1)采集并联点三相电压和三相电流;2)对并网点三相电压进行锁相,得到并网点频率反馈f;3)幅值计算模块根据采集的三相电压和三相电流,得到并网点电压和电流反馈幅值u、i;4)取并联点反馈频率f、反馈电压u与参考频率fref=50hz参考电压幅值uref=220或380v比较,得到频率误差δf和电压幅值误差δu,分别进行比例积分运算得到被调制信号的频率系数fo和并联点参考电流幅值iref;需要说明的是,本实施例中提到的并联点指的是各个储能变流器并联连接的点,参照图2中①位置。5)并联点参考电流幅值iref与并网点反馈电流幅值i进行比较,得到并网点电流误差δi,对δi进行比例积分运算,以并联点电流内环运算结果io-ref作为各并联储能变流器电流内环参考电流;6)并联/网控制柜通讯模块把电流幅值参考io-ref和频率系数fo广播发送给各储能变流器;7)第x个储能变流器接收到参考电流idref、iqref,与采集自身出口电感电流iax、ibx、icx。

    直流软启动回路由主直流接触器、辅助直流接触器及软启动电阻组成,避免上电瞬间产生大电流对储能变流器及电池的冲击。b、c两相的电路结构及器件参数与a相完全相同,不再重复叙述。a、b、c三相的直流母线电容输出端通过直流接触器进行连接,正极与负极分别单独进行连接,通过控制直流接触器的通断可以实现三相直流母线电容输出端连接在一起或者完全分开,当直流接触器闭合后,三相直流母线电容的正极连接在一起,直流母线电容的负极连接在一起,这时三相的dc+及dc-端只能连接同一种电压等级的电池,当直流接触器断开后,三相直流相互**,这时三相的dc+及dc-端可以分别连接不同电压等级的电池,实现同一台储能变流器对不同电压等级电池的适用性。将图3所示的储能变流器变压器原边首尾依次连接,即将变压器原边连接成三角形连接关系,能够实现三相三线式供电,简单的改变储能变流器的接线方式,即可实现三相四线制到三相三线制供电方式的转变,同一台机器可以适用不同的电网供电方式。需要说明的是,并联的变流器应该采用相同的接线方式,变流器交流侧和电网间接入并网/并联控制柜,并网控制柜采用相同的接线方式。在另一些实施方式中,公开了一种无隔离变压器储能变流器。所述散热通道的一端对应于散热扇的风口设置,且另一端为敞口设置。

    第二实施例:如附图4至附图6所示,所述电池储能箱2为包含内空腔的箱体结构,所述电池储能箱2朝向散热通道6一侧的壁体和所述电池储能箱2远离于散热通道6一侧的壁体上均贯通开设有若干散热孔7。通过若干散热孔7以加快电池储能箱2内腔中的热量扩散。所述电池储能箱2内腔中沿散热通道6的长度方向间距设置有若干隔离条9,所述隔离条9为长条状结构,且各个所述隔离条9的长度方向沿垂直于散热通道6的方向设置,两相邻所述隔离条9之间的区域形成电池腔,所述电池腔内容纳电池组8。通过隔离条9将电池组8隔开,同样也是避免两相邻的电池组直接接触导热,保证电池组的安全性。且相应的,两相邻所述电池腔之间形成次级散热通道10,所述电池储能箱2两侧壁上的散热孔7均对应于次级散热通道10设置,所述次级散热通道10通过散热孔7与散热通道6连通设置。在散热组件4工作状态下,所述次级散热通道10与散热通道6为气流提供流动通道,以保证对两电池储能箱2的快速散热。第三实施例:还包括侧封板5,两个所述侧封板5分别对应封闭设置在散热通道6的两端,且所述散热通道6通过侧封板5形成封闭腔,从而使得在散热扇在向散热通道6排风的状态下,气流不至于从散热通道的两端流出。有益效果:本实用新型通过导热基座对储能箱体进行支撑和导热。深圳三元锂储能系统

发电量不能满足负载需要时。杭州三元锂储能电池

    (1)电池储能系统的组成BESS主要由电池系统(BatterySystem,BS)、功率转换系统(PowerConversionSystem,PCS)、电池管理系统(BatteryManagementSystem,BMS)、监控系统等4部分组成;同时,在实际应用中,为便于设计、管理及控制通常将电池系统、PCS、BMS重新组合成模块化BESS,而监控系统主要用于监测、管理与控制一个或多个模块化BESS。图1-2为BESS的系统结构示意图。电池储能系统结构示意图1)电池系统电池系统是BESS实现电能存储和释放主要载体,其容量的大小及运行状态直接关系着BESS的能量转换能力及其安全可靠性。通过电池单体的串/并联可实现电池系统容量的扩大,即大容量电池系统(LargeCapacityBatterySystem,LCBS)。因受电池单体端电压低、比能量及比功率有限、充放电倍率不高等因素的制约,LCBS一般由成千上万个电池单体经串并联后而组成。由电池单体经串/并联成LCBS的方式较多,在实际开发与应用中一种常用成组方式:先由多个电池单体经串/并联后形成电池模块(BatteryModule,BM),再将多个电池模块串联成电池串,**后由多个电池串经并联而成LCBS。图1-3为一种常用LCBS成组方式示意图,电池系统由m个电池串并联而成。杭州三元锂储能电池

浙江瑞田能源有限公司拥有一般项目:新能源原动设备制造;新能源原动设备销售;电池制造;电池销售;光伏设备及元器件制造;光伏设备及元器件销售;变压器、整流器和电感器制造;智能输配电及控制设备销售;发电机及发电机组制造;发电机及发电机组销售;太阳能发电技术服务;新材料技术研发;货物进出口;技术进出口(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)。等多项业务,主营业务涵盖新能源电池,锂电池,储能电池,叉车电池。目前我公司在职员工以90后为主,是一个有活力有能力有创新精神的团队。公司业务范围主要包括:新能源电池,锂电池,储能电池,叉车电池等。公司奉行顾客至上、质量为本的经营宗旨,深受客户好评。一直以来公司坚持以客户为中心、新能源电池,锂电池,储能电池,叉车电池市场为导向,重信誉,保质量,想客户之所想,急用户之所急,全力以赴满足客户的一切需要。

储能产品展示
  • 杭州三元锂储能电池,储能
  • 杭州三元锂储能电池,储能
  • 杭州三元锂储能电池,储能
与储能相关的**
信息来源于互联网 本站不为信息真实性负责