由于阿⽶卡星在⼄醇中的溶解度有限,在使⽤⼄醇输注制备脂质体过程中,阿⽶卡星转移到半可溶性的凝聚状态,被包裹在脂质体的核⼼内部。令⼈惊讶的是,获得了较⾼的包封效率(在优化的制备参数下,游离药物为5.2%)和药脂⽐(~0.7)。由于其多阳离⼦性质,被包封的药物在脂质体膜上表现出低通透性,使脂质体在⾎液循环过程中保持稳定。阿糖胞苷(DepoCyte)、**(DepoDur)和布⽐卡因(Exparel)⽔溶液被包裹在MVLs 的腔室中(由94%的⽔腔和4%的脂质组成);因此,⼩体积的脂质体悬浮液中含有⼤量药物。为了进⼀步提⾼包封效率和缓释,可采⽤将药物化合物从单质⼦⽆机酸盐转化为⼆质⼦或三质⼦⽆机酸盐(如硫酸盐盐或磷酸盐)和多醇有机酸共包封的⽅法。脂质体的载药率怎么计算。杭州脂质体载药影像
脂质体成分配比脂质体是由多种组分构成的,
主要包括:1.磷脂质:是脂质体**主要的组分,构成了脂质双层结构的主体。磷脂质包括磷脂、甘油磷脂、胆固醇等,它们在水性环境中通过亲水头部和疏水尾部的相互作用形成了双层结构。2.胆固醇:在脂质体中扮演着调节脂质双层流动性和稳定性的重要角色。胆固醇可以调节磷脂质的包装密度,增强脂质体的机械稳定性。3.表面活性剂:通常用于稳定脂质体的水合壳,并且有助于脂质体的稳定分散在水相中。常见的表面活性剂包括辛酸单酯类、磺酸盐类等。4.PEG衍生物:如前面所述,聚乙二醇(PEG)衍生物可以修饰脂质体表面,增强其稳定性、延长血液循环时间和降低免疫原性。5.药物或其他活性成分:脂质体通常被设计用来载药或其他活性成分,这些物质可以被包裹在脂质体内部,通过脂质双层的特性来实现针对性的释放或传递。DepoCyte、DepoDur和Exparel具有特殊的结构和相似的脂质成分。MVLs的形成⾄少需要两种类型的脂质:两亲性脂质和中性脂质(如双⽢油酯、⽢油三酯、植物油)。 杭州脂质体载药影像由于AS-ODNs可以下调某些RNA并抑制靶蛋白的表达,因此它们被认为具有作为核酸药物的潜力。
非病毒载体通常具有比病毒载体更低的转染效率,但由于它们被认为要安全得多,因此已被***研究。纳米颗粒递送系统,其中阳离子脂质纳米颗粒通过核酸的负磷酸基团装载,是一类主要的非病毒载体,显示出高生产力和装载效率。用于携带核酸的纳米颗粒系统在整体上可分为基于脂质或聚合物的纳米颗粒,在与核酸相互作用后,每种纳米颗粒都被称为“脂质复合物”或“多聚体”。这些复合物的细胞递送被认为是通过内吞作用发生的,然后内体逃逸到细胞质中。阳离子脂质体作为核酸的一种传递系统,具有一定的优势。首先,阳离子脂质体在体内给药后是可生物降解的。内源性酶的存在可以分解脂质体的脂质成分。脂质体在各种纳米载体之间****的生物相容性导致在体内研究中使用阳离子脂质体递送各种sirna。脂质组成依赖性的表面电荷密度调节可以控制与带负电的核酸的相互作用力。聚乙二醇化脂质或功能性脂质的包含可以使脂质体的多种表面修饰成为可能。此外,在阳离子脂质体的脂质双层中包含亲脂性化学药物可以提供***药物和***性核酸的共递送。鉴于阳离子脂质体的优势,人们已经研究了阳离子脂质体用于递送各种核酸,如质粒DNA、反义寡核苷酸和siRNA。
4PEG2000在脂质体中的作用
PEG2000是一种聚乙二醇(PEG)衍生物,常用于脂质体的表面修饰。它在脂质体中具有多种作用:1.稳定性增强:PEG2000可以在脂质体表面形成一层稳定的水合层,防止脂质体的聚集和沉淀,从而提高其在溶液中的稳定性。2.血液循环延长:脂质体表面修饰PEG2000可以降低脂质体被吞噬的速度,延长其在血液循环中的半衰期,从而增加药物的生物利用度。3.免疫原性降低:PEG2000可以掩盖脂质体表面的亲水性基团,减少脂质体与免疫系统的识别和***,降低免疫原性,提高脂质体的生物相容性。4.药物释放调控:PEG2000修饰的脂质体可以通过改变PEG链的长度和密度来调控药物的释放速率和方式,实现对药物的精确控制释放。在Doxil和Onivyde中,甲氧基peg(Mw2000Da)与DSPE(MPEG-DSPE)共价结合,提供了“隐形”和空间稳定的脂质体。PEG的分⼦量和PEG-DSPE在脂质组成中的摩尔百分⽐对双层填料、循环时间和热⼒学稳定性有重要影响。⾼分⼦量的PEG(>2000Da)移植到脂质头群上,表现出来⾃脂质体表⾯的排斥⼒,并保护脂质体不与⾎清蛋⽩结合,避免被单核吞噬系统(MPS)进⼀步***,但也减少了靶细胞对脂质体的相互作⽤和内吞作⽤。 ⽢油磷脂(GP)、鞘磷脂(SM)和胆固醇(Chol)是市场上脂质体产品中使⽤的基本成分。
microRNA脂质体
microRNA是真核细胞中发现的短(约22mer)非编码RNA,通过结合互补的mRNA序列发挥生物调节剂的作用。miRNA以初级miRNA的形式从其编码的核基因转录,其长度为数百个核苷酸。RNaseIII酶,Drosha,将初级miRNA加工成pre-miRNA(长度为70个核苷酸),携带一个特征的发夹环。然后pre-miRNA移动到细胞质中,在那里RNaseIII酶Dicer产生成熟的miRNA和乘客链。***,成熟的miRNA被整合到RNAi诱导的沉默复合体中,以降解它们的靶mRNA。由DOTMA、胆固醇和vitaminETPGS1k琥珀酸盐组成的阳离子脂质体被证明可以有效递送pre-miRNA-133b,导致A549非小肺*细胞中成熟miRNA-133b的表达比对照组细胞增加2.3倍,Mcl-1蛋白的表达减少1.8倍。经尾静脉注射含有pre-miRNA-133b的阳离子脂质体(1.5mg/kg)的ICR小鼠肺组织中成熟miRNA-133b的表达比接受含有紊乱的pre-mirna的阳离子脂质体的小鼠高52倍。 将荧光标记引入载药脂质体的作用有荧光标记的定位和跟踪,药物释放的实时监测。杭州脂质体载药影像
PEG2000是一种聚乙二醇(PEG)衍生物,常用于脂质体的表面修饰。杭州脂质体载药影像
脂质体中的点击反应**近,利用巯基炔“点击”化学筛选了一种仿生硫醚脂质文库,该文库将阳离子硫醚胺脂质与两种疏水烷基硫醇偶联。一种含有DOPE的脂质制剂被发现可以增加各种细胞类型中GFP特异性siRNA的摄取。由于阳离子脂质体通常表现出相对较高的细胞毒性,因此人们提出了各种策略来降低其毒性并增强其在体内对siRNA的递送。为此,研究人员将无毒且可生物降解的阴离子聚合物包覆在阳离子脂质体上,如聚l-谷氨酸钠盐、聚(丙烯酸)钠盐、葡聚糖硫酸钠盐、海藻酸钠盐、透明质酸钠盐、硫酸肝素钠盐和羧甲基纤维素钠盐。在这些阴离子聚合物中,聚谷氨酸在大范围内没有任何明显的毒性,并且与未包被的脂质体相比,包被的阳离子脂质体在肝脏和肺组织中的siRNA递送增强。杭州脂质体载药影像