微小残留病变(minimalresidualdisease,MRD):随着化疗、靶向***、造血干细胞移植等***方式的改进,血液**的***效果日益改善。微小残留病(MRD)导致的复发是目前血液*****的一大难题。动态监测MRD对于评价***疗效、预测疾病复发、实施个体化***具有重要的指导意义。MRD检测方法需满足可定量、标准化、便捷性的要求。目前**常见的是流式细胞学(flowcytometry,FCM)和PCR两大类,但只有灵敏度高于10-4才能被纳入标准化评估。数字PCR技术,其有限稀释的特点可降低复杂的背景干扰,浓缩低丰度目的基因信号,从而提高MRD检测的灵敏度。在慢性髓系白血病中,Wang等同时用dPCR和qPCR检测了61名CML患者的外周血,这些患者在每3个月一次连续3次的qPCR检测中,已经检测不到BCR-ABL,dPCR检测到18%的患者是阳性的。在随后的随访中,dPCR能比qPCR提前几个月检测到BCR-ABL的升高。在淋系白血病的BCL2-IGHMBR检测中,Drandi等在222例样本中验证了dPCR和qPCR方法的一致性,还成功地将dPCR应用于3例qPCR无法检测的病例。数字PCR作为目前灵敏度和准确性比较高的分子检测方法,非常适用于微小残留病变评估。整个实验过程需严格按照标准流程进行实验操作。浙江准确数字PCR专业服务
使用不合适的引物可能会引入引物二聚体、非特异性扩增等,进而影响实验结果的准确性。在此,小Q建议您在设计引物时需做以下几个方面的检查,***需对设计好的引物进行BLAST比对分析,以确保引物的特异性!在数字PCR***定量实验中,对于基因突变检测、基因表达差异分析和拷贝数变异鉴定等对实验精细性要求较高的实验,需要特异性更高的Assay。QIAGEN基于QIAcuity数字PCR平台开发并验证了针对上述常见应用的700多组dPCR LNA Assay,所有Assay均经过锁核酸修饰来增强其对互补序列的亲和力和特异性,进而提高实验结果的准确性。广东重现性数字PCR服务市场想象空间大,国内外入局者众多。
QuantaLife 利用油包水微滴生成技术 开发了微滴式数字PCR技术,这也是**早出现的相对成熟的数字PCR平台,在运行成本和实验结果稳定性方面都基本达到了商品化的标准。2011年,QuantaLife 公司被Bio-Rad公司收购,其微滴式数字PCR仪产品更名为QX100型号仪继续在市场上销售,这个早期型号为dPCR概念的普及和应用领域的拓展发挥了重要作用。2013年该公司又推出了升级型号QX200。2012年,RainDance公司推出Raindrop型号数字PCR设备,这个设备将其原有的二代测序文库制备平台技术平移到数字PCR技术平台,在高压气体驱动下,将每个标准反应体系分割成包含100万至1000万个皮升级别微滴的反应乳液, 该公司的创始人之一Darren Link表示这种超高的微滴数目可以为用户“提供更高的检测动态范围,适用于处理更大浓度差异的不同样品”。
***代PCR技术是常规PCR技术,对目的基因扩增后进行凝胶电泳,将扩增条带与已知浓度的标准品比较,得到定性结果,但在产物分析时需要开盖操作,容易引起交叉污染,导致假阳性。第二代PCR技术是在PCR反应体系加入荧光基团,利用荧光信号累积实时监测整个PCR反应进程,通过相关数据分析方法对目的基因进行定量分析的技术。数字PCR是第三代PCR技术,是一种采用微流控或微滴化的方法将稀释后的待测样品核酸溶液分散至微反应器或微滴中再在相同条件下进行单分子PCR,检测每一个微反应器或微滴中荧光信号通过直接计数或泊松分布修正得到原始浓度或含量的核酸分子***定量技术。目前大致可分为三类:微反应室/孔板数字PCR、大规模集成微流控芯片数字PCR、液滴数字PCR。肺*T790M突变-cfDNA动态监测。
数字PCR技术的原理非常简单,然而在样品分散(divide)的环节上却遇到了无法突破的瓶颈。早期的dPCR尝试使用96孔板到384孔板甚至1536孔板作为分散反应的载体,或者采用类似流式技术的磁珠乳液扩增方法(BEAMing-Beads, Emulsion, Amplification, Magnetics),2006年 Fluidigm公司推出了***台商品化的基于芯片的商品化数字PCR系统。2008年德国 Inostics 推出基于磁珠法乳浊液扩增和流式检测方式的BEAMing dPCR 检测服务,但这些方法无论在分散程度和数据群体的体量上都无法达到更加精细的要求,时间和耗材成本严重限制了dPCR技术的发展。PCR 扩增和荧光信号分析。云南核酸拷贝数定量数字PCR服务
通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。浙江准确数字PCR专业服务
微流控芯片技术的发展为我们提供了一个实现低成本、小体积和高通量平行PCR分析的理想平台。2000年,Unger等采用多层软刻蚀 ( multilayer soft lithography,MSL) 技术在聚二甲基硅氧烷( polydimethylsiloxane,PDMS) 微流控芯片上设计并加工高密度微泵微阀结构(如图2b所示) ,他们将这种芯片称为IFC( integrated fluidic circuit)。IFC 利用PDMS材料具有高弹性的特点,通过多层软刻蚀技术在芯片上加工交织的液体和气体通道结构,可以快速并准确地将流体分成若干个**的单元,进行多步平行反应。2006 年Ottesen等将IFC芯片用于数字PCR分析,通过精细控制微泵微阀的开启和关闭,一步操作即可将一个样本平均分配到 1176个反应单元中,每个反应单元的体积只有6. 25 nl,成功代替了传统点样仪和384孔板。他们同时进行了6个样本7 056个单元的平行数字PCR分析。此外, Hansen及其同事采用 MSL技术加工了具有10^6个结构单元的数字PCR 芯片,每个反应单元的体积降低至10 pl,芯片密度达到 440000 /cm2。与微反应室数字PCR系统相比,IFC的特点是通量更高,每个反应单元的体积更小,加样更快。**近,Men等在2mm×2mm区域内加工了82000个 fl 级反应单元,进行数字PCR分析。浙江准确数字PCR专业服务