企业商机
光学非接触应变测量基本参数
  • 品牌
  • Correlated Solutions
  • 型号
  • VIC-2D, VIC-3D, VIC-Volume
光学非接触应变测量企业商机

在当今注重安全的社会中,应变测量变得越来越重要。应变是一个关键的物理量,它描述了物体在外力和非均匀温度场等因素作用下局部的相对变形程度。应变测量是机械结构和机械强度分析中的重要手段,也是确保机械设备正常运行的关键方法。在航空航天、工程机械、通用机械以及道路交通等领域,应变测量都得到了普遍的应用。应变测量有多种方法,每种方法都对应着不同的传感器。常见的应变测量传感器包括电阻应变片、振弦式应变传感器、手持应变仪、千分表引伸计和光纤布拉格光栅传感器等。其中,电阻应变片是应用较普遍的一种,因为它具有高灵敏度、快速响应、低成本、便于安装、轻巧和小标距等特点。光学非接触应变测量是一种新兴的测量方法,它利用光学原理来测量物体的应变。这种方法不需要直接接触被测物体,因此可以避免传统测量方法中可能引起的干扰和损伤。光学非接触应变测量主要依靠光纤布拉格光栅传感器来实现。光纤布拉格光栅传感器是一种基于光纤中的布拉格光栅原理的传感器,它可以通过测量光纤中的光频移来确定应变的大小。光学应变测量通过光栅投影和图像处理技术,实现了对物体表面应变的非接触测量。四川光学数字图像相关应变与运动测量系统

四川光学数字图像相关应变与运动测量系统,光学非接触应变测量

光学非接触应变测量是一种利用光学原理来测量物体表面应变的方法。其中,全息干涉术和激光散斑术是两种常用的技术。全息干涉术利用全息干涉的原理来测量物体表面的应变。它通过将物体表面的应变信息转化为光的干涉图案来实现测量。具体而言,当光线照射到物体表面时,光线会被物体表面的形变所影响,从而产生干涉图案。通过对干涉图案的分析,可以得到物体表面的应变分布情况。全息干涉术具有高精度、高灵敏度和非接触的特点,因此在材料研究、结构分析和工程测试等领域得到普遍应用。激光散斑术是另一种常用的光学非接触应变测量方法。它利用激光光束照射到物体表面,通过物体表面的散射光产生散斑图案。物体表面的应变会导致散斑图案的变化,通过对散斑图案的分析,可以得到物体表面的应变信息。激光散斑术具有简单、快速、非接触的特点,适用于对物体表面应变进行实时监测和测量。海南哪里有卖光学非接触式应变测量光学应变测量可以间接推断出物体内部的应力分布,为材料力学性能研究提供了重要数据。

四川光学数字图像相关应变与运动测量系统,光学非接触应变测量

变形测量是指对物体形状、尺寸、位置等参数进行测量和分析的过程。根据测量方法和精度要求的不同,可以将变形测量分为多个分类。一种常见的变形测量方法是静态水准测量,它主要用于测量地面高程的变化。观测点高差均方误差是指在静态水准测量中,测量得到的几何水准点高差的均方误差,或者是相邻观测点对应断面高差的等效相对均方误差。这个指标反映了测量结果的稳定性和精度。另一种常见的变形测量方法是电磁波测距三角高程测量,它利用电磁波的传播特性来测量物体的高程变化。观测点高差均方误差在这种测量中也是一个重要的指标,用于评估测量结果的精度和可靠性。除了高差测量,观测点坐标的精度也是变形测量中的关键指标。观测点坐标的均方差是指测量得到的坐标值的均误差、坐标差的均方差、等效观测点相对于基线的均方差,以及建筑物或构件相对于底部固定点的水平位移分量的均方差。这些指标反映了测量结果的准确性和稳定性。观测点位置的中误差是观测点坐标中误差的平方根乘以√2。这个指标用于评估测量结果的整体精度。

通过大变形拉伸实验,可以研究橡胶材料在拉伸应力下的变形情况,并结合试验方法对橡胶材料和金属材料的抗拉力学性能进行评估。有限元分析和实验结果可用于测量特殊材质橡胶在拉伸过程中的应力、形变和位移,为提高橡胶材料的综合力学性能提供数据依据。传统的位移和应变测量方法采用引伸计和应变片等接触式方法,精度较高,但应变片需要直接粘贴在样品表面,并通过接线连接采集箱,使用繁琐且量程有限。对于橡胶类材料的拉伸实验,由于材料本身的特殊性,不易黏贴应变片,再加上橡胶拉伸变形大,普通的引伸计和应变片量程不足,无法满足测量要求。为了解决这一问题,光学非接触应变测量方法应运而生。光学非接触应变测量方法利用光学原理,通过测量光线在材料表面的变化来推断材料的应变情况。这种方法不需要直接接触样品表面,避免了对样品的破坏和影响,同时具有高精度和大量程的优势。光学非接触应变测量对环境条件有一定的要求,特别是对光照条件的稳定性和均匀性。

四川光学数字图像相关应变与运动测量系统,光学非接触应变测量

光学应变测量和光学干涉测量是两种常见的光学测量方法,它们在测量原理和应用领域上有着明显的不同。下面将介绍光学应变测量的工作原理,并与光学干涉测量进行比较,以便更好地理解它们之间的区别。光学应变测量是一种通过测量物体表面的应变来获得物体应力状态的方法。它利用光学传感器测量物体表面的形变,从而间接地推断出物体内部的应力分布。光学应变测量的工作原理基于光栅投影和图像处理技术。首先,将光栅投影在物体表面上,光栅的形变将随着物体的应变而发生变化。然后,使用相机或其他光学传感器捕捉光栅的形变图像。通过对图像进行处理和分析,可以得到物体表面的应变分布。与光学应变测量相比,光学干涉测量是一种直接测量物体表面形变的方法。它利用光的干涉现象来测量物体表面的形变。光学干涉测量的工作原理是将一束光分为两束,分别经过不同的光路,然后再次合成。当物体表面发生形变时,两束光的相位差发生变化,通过测量相位差的变化,可以得到物体表面的形变信息。光学非接触应变测量可以实现非接触式的应变测量,具有普遍的应用前景。重庆扫描电镜非接触测量装置

光学非接触应变测量在高温环境下实现了非接触式测量,提供了更便捷和精确的应变监测方法。四川光学数字图像相关应变与运动测量系统

随着矿井开采逐渐向深部延伸,原岩应力和构造应力不断上升,这对于研究围岩力学特性、地应力分布异常以及岩巷支护设计至关重要。为了深入探究深部岩巷围岩的变形破坏特征,一支研究团队采用了XTDIC三维全场应变测量系统和相似材料模拟方法。该研究团队通过模拟不同开挖过程和支护作用对深部围岩变形破坏的影响,实时监测了模型表面的应变和位移。他们使用了XTDIC三维全场应变测量系统,该系统能够实时捕捉围岩表面的应变情况,并将其转化为数字信号进行分析。通过这种方法,研究团队能够准确地观察到围岩在不同开挖和支护条件下的变形情况。研究团队还使用了相似材料模拟方法,将实际的岩石围岩模型转化为相似材料模型进行实验。他们根据实际的岩石力学参数,选择了相应的相似材料,并通过模拟开挖和支护过程,观察围岩的变形和破坏情况。通过分析不同支护设计和开挖速度对围岩变形破坏规律的影响,研究团队为深入研究岩爆的发生和破坏规律提供了指导依据。他们发现,合理的支护设计和适当的开挖速度可以有效地减少围岩的变形和破坏,从而降低岩爆的风险。四川光学数字图像相关应变与运动测量系统

光学非接触应变测量产品展示
  • 四川光学数字图像相关应变与运动测量系统,光学非接触应变测量
  • 四川光学数字图像相关应变与运动测量系统,光学非接触应变测量
  • 四川光学数字图像相关应变与运动测量系统,光学非接触应变测量
与光学非接触应变测量相关的**
信息来源于互联网 本站不为信息真实性负责