黑体炉的另一个品牌INFRAMET位于波兰,成立于2002年,一家高科技设备制造商,用于测试电光监视系统(热成像仪、夜视设备、可见光近红外摄像机、SWIR成像仪、激光测距仪、激光指示器、多传感器系统、融合系统、紫外摄像机、光学瞄准器)和此类系统的主要模块(图像增强器管、红外焦平面阵列/CCD/CMOS成像传感器、光学物镜)。EO监测系统的质量控制、设计优化、制造和维护需要测试设备。这里就简单介绍一下INFRAMET黑体源,分为腔体和面源黑体炉停止工作后,可以关闭开关电源,但是不要拔电源插头。小巧型黑体炉BR125
研究发现,发射率越高,黑体辐射对环境的敏感度越低,受环境温度影响越小。黑体炉的优势之一就是其高发射率,所有的扩展面源黑体的发射率都是0.98,腔式黑体的发射率>0.99。扩展面源黑体的通过其符合LNE(与NIST同等的法国标准)特定的一种特定涂料来实现高发射率。HGH通过对黑体进行辐射校准来实现黑体在1到14um的整个波长范围内其等效发射率达到1。通过一个简单的测试来了解辐射校准的重要性:100℃的条件下,分别在不做辐射校准和做辐射校准的情况下测量黑体(发射率0.98)的温度(通过红外温度计)。不做辐射校准的情况下其表面温度为98℃,而做过辐射校准后其表面温度为100℃。德国原装进口黑体炉维修黑体炉使用操作简单,不仅适合用于实验室的校准,也可用于现场的校准工作。
当谈及黑体的温度精度时,必须考虑以下四个因素:•温度传感器(通常是Pt传感器)•电子测试单元•温度传感器和发射面之间的导热材料•反射率只要以上因素中有一个没能控制好,就不能保证温度精度。问题是温度芯片和发射表面之间的热接触无法测量。这也就是为什么在说明温度精度时,厂家只能说明其温度传感器结合他们测试卡的精度,而不是黑体温度的实际精度。总之,厂家给出的精度也许是一个不错的指导。作为需要慎重考虑的参数,黑体炉的反射率以及温度传感器和发射面之间的导热材料上,从而保证黑体的温度精度尽可能的接近温度传感器的精度。
黑体炉改变10℃以内的温度需要的温度稳定时间在60秒以内,无论是升温或降温情况下。HGH的黑体可以在任意时间设置成任意想要的温度,不受步骤流程的约束,在降温过程中(低于0℃)。例如,当把一个黑体从100℃降温到25℃时,普通低温黑体大概需要15分钟;对于**黑体来说,它的典型冷却速率为0.2℃/s,所以只需要6分钟就可以从100℃降温到25℃;而HGH的DCN1000黑体系列,*需要3分钟。另外,对于双温应用(例如NETD),HGH研发了双发射面黑体:TwiN1000黑体。它们有两个**的发射面,温度范围0-150℃,可以满足在两种温度下同时工作的应用需求,是比短升温和降温时间更好的选择。温度均匀性是黑体辐射源的重要指标之一,是黑体炉设计的重要方面。
**组听取汇报并逐章逐条审查标准及编制说明的全部内容,从先进性、科学性和可操作性等方面给予指导性意见,对送审稿中存在的问题进行讨论,并提出修改意见。经质询和讨论后,**组一致认为《清洗消毒器温度、时间参数校准方法》、《表面温度源性能测评方法》2项团体标准起草过程符合团体标准管理规定,内容和格式符合现行相关法律法规、国家标准及GB/T1.1—2020要求。充分体现了该团体标准制定的先进性、科学性和可操作性。黑体炉**组一致同意上述2项团体标准通过审定,接下来,标准编制组将根据本次审定会提出的修改意见形成报批稿。黑体炉一般会搭配测温门使用,热成像技术在**期间,能够减少人员的相互接触。低温黑体炉附件
实际黑体炉存在着非均匀的温度分布,空腔有效发射率就随着温度分布和波长变化而变化。小巧型黑体炉BR125
黑体作为标准红外辐射源,它的光谱能量是可以通过计算而获得。红外系统校准、各种材料发射率的测定、红外探测器响应率的测定、红外测温仪、红外热像仪、红外遥感机载星辐射计等仪器的标定,都要使用黑体。BR系列黑体辐射源,温度控制采用PID控制技术,具有精度高、稳定性好的特点。温度校准和修正方便。BR400 中温黑体辐射源/黑体炉温度范围宽广,由环温+10℃~400℃内任意一温度点皆可随需要调整。稳定、重复的校正面板让使用者能快速而准确地校正及测试红外线高温计(红外测温仪)。黑体开孔直径Φ125mm的面积,适用大部份的红外线高温计(红外测温仪)。系统另有RS-232或485的计算机通讯接口方便计算机控制设定温度及自动测试小巧型黑体炉BR125