与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整大脑深处神经的了解与认识。2019年,JeromeLecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度比较好的方法是用更长的波长作为激发光。中国市场多光子显微镜产量、消费量、进出口分析及未来趋势。啮齿类多光子显微镜数据分析
基于多光子显微镜的神经成像技术原理:多光子显微镜可用于深度成像和三维成像,因此可用于拍摄不透明的厚样品。目前主要使用的多光子显微镜包括双光子显微镜和三光子显微镜。双光子显微镜的结构与共焦类似,区别在于:1)双光子显微镜的激发光波长比共焦长,能量较低,但穿透能力较强;2)双光子显微镜没有小孔,提高了检测效率;3)双光子显微镜成像深度较快提高。那么,为什么双光子能具有共焦显微镜所没有的优势呢?原因是它采用双光子激发方式。使用波长较长的激发光子,光子的能量较低,因此电子需要吸收两个这样的激发光子才能达到激发态,从而释放出一个荧光光子。因此,荧光信号的强度与光强的平方成正比。因为焦点处的光强较大,只能在焦点处激发荧光。波长越长,穿透力越强,因此双光子显微镜的成像深度大于共焦显微镜。由于两个光子只在焦点激发荧光,不需要小孔,而是将所有的荧光都收集起来,提高了检测效率。三光子显微镜的原理类似于双光子显微镜,利用三个激发光子可以实现更深的成像深度。由于使用了更长的激发波长,穿透能力更强,成像深度更大。此外,由于较强的非线性效应,荧光信号的强度与光强的立方成正比,因此比双光子具有更低的非聚焦激发和背景噪声。美国啮齿类多光子显微镜成像区域证实了多光子显微镜对皮肤和别的皮肤病的诊断的可行性。
双光子显微镜工作原理是将超快的红外激光脉冲传输到样品中,在样品中与组织或荧光标记相互作用,这些组织或荧光标记发出用于创建图像的信号。双光子显微镜被多用于生物学研究,因为它能够产生高分辨率的3-D图像,深度达1毫米。然而,这些优点带来了有限的成像速度,因为微光条件需要逐点图像采集和重建的点检测器。为了加快成像速度,科学家之前开发了一种多焦点激光照明方法,该方法使用数字微镜设备(DMD),这是一种通常用于投影仪的低成本光扫描仪。此前人们认为这些DMD不能与超快激光一起工作。然而现在解决了这个问题,这使得DMD在超快激光应用中得以应用,这些应用包括光束整形、脉冲整形、快速扫描和双光子成像。DMD在样品内随机选择的位置上产生5到30点聚焦激光。
根据阿贝成像原理,许多光学成像系统是一个低通滤波器,物平面包含从低频到高频的信息,透镜口径会限制高频信息通过,只允许一定的低频通过,因此丢失了高频信息会使成像所得图像的细节变模糊,降低分辨率。对于三维成像来说,宽场照明时得到的信息不仅包含物镜焦平面上样品的部分信息,同时还包含焦平面外的样品信息。由于受到焦平面外的信息干扰,常规荧光显微镜无法获得层析图像。三维结构光照明显微镜能够提高分辨率、获得层析图像,是因为利用特定结构的照明光能引入样品的高频信息,当结构光的空间频率足够高时,只有靠近焦面的部分才能被结构光调制,超出这一区域,逐渐转变为均匀照明,也就是只有焦面附近的有限区域具有相对完整的频谱信息,离焦后,高频信息迅速衰减,所以使用高频结构光照明可以区分焦面和离焦区域来获得层析图像。然后再通过轴向扫描可以获取样品不同深度的焦面图像,重建样品的三维结构。多光子激光扫描显微镜采用波长较长的红外激光,能量脉冲式激发,红外光比可见光在生物组织中的穿透力更强。
细胞在受到外界刺激时,随着刺激时间的增长,即使刺激继续存在,Ca2+荧光信号不但不会继续增强,反而会减弱,直至恢复到未加刺激物时的水平。对于细胞受精过程中Ca2+荧光信号的变化情况,研究发现,配了在粘着过程中,Ca2+荧光信号未发生任何变化,而配子之间发生融合作用时,Ca2+荧光信号强度却会出现一个不稳定的峰值,并可持续几分钟。这些现象,对研究受精发育的早期信号及Ca2+在卵细胞和受精卵的发育过程中的作用具有重要的意义。在其它一些生理过程如细胞分裂、胞吐作用等等,Ca2+荧光信号强度也会发生很强的变化。显微镜简史:从光到多光子显微镜。美国多光子显微镜代理商
多光子显微镜的发展历史充满了贡献、开发、进步和数个世纪以来多个来源和地点的改进。啮齿类多光子显微镜数据分析
细胞在受到外界刺激时,随着刺激时间的增长,即使刺激继续存在,Ca2+荧光信号不但不会继续增强,反而会减弱,直至恢复到未加刺激物时的水平。对于细胞受精过程中Ca2+荧光信号的变化情况,研究发现,配了在粘着过程中,Ca2+荧光信号未发生任何变化,而配子之间发生融合作用时,Ca2+荧光信号强度却会出现一个不稳定的峰值,并可持续几分钟。这些现象,对研究受精发育的早期信号及Ca2+在卵细胞和受精卵的发育过程中的作用具有重要的意义。在其它一些生理过程如细胞分裂、胞吐作用等,Ca2+荧光信号强度也会发生很的变化。啮齿类多光子显微镜数据分析