全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直...
7. 拓扑学a:点集拓扑学,b:代数拓扑学,c:同伦论,d:低维拓扑学,e:同调论,f:维数论,g:格上拓扑学,h:纤维丛论,i:几何拓扑学,j:奇点理论,k:微分拓扑学,l:拓扑学其他学科。8. 数学分析a:微分学,b:积分学,c:级数论,d:数学分析其他学科。9. 非标准分析10. 函数论a:实变函数论,b:单复变函数论,c:多复变函数论,d:函数逼近论,e:调和分析,f:复流形,g:特殊函数论,h:函数论其他学科。11. 常微分方程a:定性理论,b:稳定性理论。c:解析理论,d:常微分方程其他学科。12. 偏微分方程a:椭圆型偏微分方程,b:双曲型偏微分方程,c:抛物型偏微分方程,d:非线性偏微分方程,e:偏微分方程其他学科。13. 动力系统a:微分动力系统,b:拓扑动力系统,c:复动力系统,d:动力系统其他学科。小学数学面积演示模型供应商。固原数学教学教具配置方案
三角函数定理
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
圆的定理
定理:过不共线的三个点,可以作且只可以作一个圆
定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧
推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧
推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧
推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧
定理:
1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等
2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线
3.圆的切线垂直经过切点的半径
4.三角形的三个内角平分线交于一点,这点是三角形的内心
5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
6.圆的外切四边形的两组对边的和相等
7.如果四边形两组对边的和相等,那么它必有内切圆
8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等
包头数学教学教具配置中小学数学需要用到哪些教具?14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成**简分数。
15、要学会把小数化成分数和把分数化成小数的化法。
16、比较大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的比较大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中比较大的一个,叫做比较大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。
18、**小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中**小的一个叫做这几个数的**小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用**小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用比较大公因数)
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
三角形内角和演示教具。
计量单位长度、面积和体积以及其同类量之间的进率质量单位和他们之间的进率1吨=1000千克 一千克=1000克时间单位进率、人民币进率1小时=60分钟 1分钟=60秒1块=10角比与比例正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题图形与空间图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量统计和可能性统计表、统计图、平均数、可能性
四则运算的意义和计数方法加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算运算定律与简便方法、四则混合运算加法交换律(a+b=b+a)、加法结合律(a+(b+c)=(a+b)+c)、乘法交换律(a*b=b*a)、乘法结合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b+c)=a*b+a*c)、连减的性质(a-b-c=a-(b+c))、商不变的性质减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)复合应用题式与方程方程 初中数学教学仪器器材设备。包头数学教学教具配置
私立中小学数学教学仪器。固原数学教学教具配置方案
四则运算的意义和计数方法加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算运算定律与简便方法、四则混合运算加法交换律(a+b=b+a)、加法结合律(a+(b+c)=(a+b)+c)、乘法交换律(a*b=b*a)、乘法结合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b+c)=a*b+a*c)、连减的性质(a-b-c=a-(b+c))、商不变的性质减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)复合应用题固原数学教学教具配置方案
深圳市星河教学用品有限公司是一家集研发、生产、咨询、规划、销售、服务于一体的贸易型企业。公司成立于2016-04-21,多年来在教学教具,教学器材,教学仪器,教学用品行业形成了成熟、可靠的研发、生产体系。在孜孜不倦的奋斗下,公司产品业务越来越广。目前主要经营有教学教具,教学器材,教学仪器,教学用品等产品,并多次以办公、文教行业标准、客户需求定制多款多元化的产品。深圳市星河教学用品有限公司研发团队不断紧跟教学教具,教学器材,教学仪器,教学用品行业发展趋势,研发与改进新的产品,从而保证公司在新技术研发方面不断提升,确保公司产品符合行业标准和要求。深圳市星河教学用品有限公司以市场为导向,以创新为动力。不断提升管理水平及教学教具,教学器材,教学仪器,教学用品产品质量。本公司以良好的商品品质、诚信的经营理念期待您的到来!
全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直...
上海本地物理教学器材
2024-11-26呼和浩特模型竞赛器材方案
2024-11-26中学模型竞赛器材制造商
2024-11-26郴州航海模型竞赛器材
2024-11-26江西九年制数学教学教具
2024-11-26贵州青少年模型竞赛器材
2024-11-25西宁小学数学教学教具
2024-11-25四川航天模型竞赛器材
2024-11-25汕尾数学教学教具价格
2024-11-25