芯弃疾JX-8B数字ELISA高敏检测产品;具有以下特点:多重、超敏微量、极速灵活、开放;
只有少量分泌蛋白可测量的可能性突显了蛋白质测量领域面临的挑战:医学上相关的生物标志物可能存在于非常低的丰度中。免疫测定仍然是是蛋白质生物标志物敏感和特异性测量的基础。然而,传统的免疫分析技术在检测不可测量的生物标志物时灵敏度不足,这些生物标志物肯定位于当前可检测范围之下。主流的传统免疫分析方法——包括酶联免疫吸附试验(ELISA)、化学发光和电化学发光——的灵敏度下限约为10^-13M(~<0.1pM)。许多降低灵敏度的方法已被描述,包括拉曼增强信号检测、电感耦合等离子体质谱,但这些方法的数据表明其成功有限。非常规方法如亚飞摩尔级检测具有明显的权衡,例如程序较长或无法提供定量答案。
芯弃疾JX-8B单分子小型化ELISA检测产品,低成本单分子检测;阵列单分子数字ELISA优势
芯弃疾JX-8B数字ELISA产品
每个生物实验室都用得起的单分子免疫检测
由于活性珠子的百分比接近50%(酶与微球的比例大于~1:1.5),然而,使用图像分析软件区分“开启”和“关闭”孔变得具有挑战性,我们达到了数字动态范围的实际上限。例如,图2中7fM(~45%活性)的信号偏离了线性。因此,这里使用50,000个孔展示的数字线性动态范围是从3.5fM到350zM,即大约四个对数单位。前提是蛋白质使用适当的酶浓度进行标记,这种动态范围对于许多临床应用来说是足够的 单分子技术数字ELISA稳定性芯弃疾JX-8B数字ELISA,微量检测,使用微量样本就能测试;
芯弃疾JX-8B数字ELISA,我们为什么能做到?产品主要原理同单分子阵列技术:
非常近,已经描述了两种数字蛋白质测量方法,这些方法能够提高对单分子水平的灵敏度。一种方法依赖于在固相上形成免疫三明治复合物,然后化学解离并通过激光计数每个分子。第二种方法由美国开发,依赖于单分子阵列和同时计数单分子捕获微珠。这两种方法都能将检测能力的下限降低10倍或更多,与增强的模拟放大方法相比,但后者技术也易于与高通量自动化仪器兼容,用于ELISA试剂处理。通过使用大量微孔阵列,可以同时获取和查询数百到数万个数据点,实现快速数据采集和稳健统计。此外,从阵列中可能获得的快速数据采集可以应用于预编码具有不同荧光特性的多个微珠亚群,从而在单分子水平上实现高通量多重分析。
创新性的解决方案:芯弃疾JX-8B数字ELISA
我公司推出的数字化高灵敏ELISA芯片检测产品应用场景:适合生物实验室、医学实验室、科研市场、产品预研、产品开发、ELISA检测、动物病情检测等各种应用场景应用范围:各种高灵敏多重免疫检测,可替代各种ELISA试剂盒,及其他免疫检测产品。
我们继续在两个关键领域改进SiMoA技术。首先,在两个关键领域可能再增加两个灵敏度等级基于对酶标记的敏感性(图2)可以检测蛋白质,如果非特异性相互作用可以更小化背景信号。单个珠子上分离和询问单个分子的能力为区分抗体-抗原结合事件和非特异性结合复合物。其次,我们简化了检测的物流。然而,即使在目前的形式下,我们相信数字ELISA有可能促进疾病的早期诊断和治理。 芯弃疾JX-8B数字ELISA,每个实验室都能用的单分子检测;
芯弃疾JX-8B数字ELISA产品
每个生物实验室都用得起的单分子免疫检测
单分子酶检测到的比较低酶分子数假设蛋白质检测分析的更终灵敏度为背景信号可能由非特异性相互作用产生。为了评估内在敏感性,我们通过将400,000个带有生物素的珠子与不同浓度的酶缀合物链霉亲和素-阝-半乳糖苷酶(S阝G)混合,创建了具有明确酶与珠子比例的珠子群体。为了方便起见,生物素化珠子是通过将生物素化DNA与功能化的珠子杂交提供的。互补DNA。[我们注意到,该实验不应被视为敏感的DNA检测;该检测的敏感性受到非特异性相互作用的限制,如补充图2所示,这些相互作用发生在酶缀合物和表面结合的DNA之间。 芯弃疾JX-8B数字ELISA,每个医学实验室都能用的单分子检测;单分子技术数字ELISA稳定性
芯弃疾JX-8B数字ELISA,人人都用能得起的单分子检测;阵列单分子数字ELISA优势
芯弃疾JX-8B数字ELISA高敏检测产品具有微量的优势:
微量:芯片上反应,流道区只有几十微米高度,极大降低试剂、样本用量;微量试剂检测:更少只需10ul样本、试剂只为常规的1/10;
芯弃疾JX-8B数字ELISA高敏检测产品具有灵活的优势:
灵活:可手动、可只使用8孔芯片,总成本、更小实验成本均较低,搭配使用常用实验室小型设备即可使用
测试结果:宽波长扫描仪结果-明场+荧光场同时看到磁珠与荧光,可观测每个磁珠上免疫反应的程度
先进新型的单分子检测方法的普及版 阵列单分子数字ELISA优势