碳化硅陶瓷相关图片
  • 耐磨SiC陶瓷生产工艺,碳化硅陶瓷
  • 耐磨SiC陶瓷生产工艺,碳化硅陶瓷
  • 耐磨SiC陶瓷生产工艺,碳化硅陶瓷
碳化硅陶瓷基本参数
  • 品牌
  • 禹贝陶瓷,上海禹贝,禹贝精密陶瓷
  • 型号
  • 齐全
  • 是否定制
  • 材质
  • 碳化硅
碳化硅陶瓷企业商机

SiC的反应烧结法早在美国研究成功,反应烧结的工艺过程为:先将α-SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si反应,生成β-SiC,并与α-SiC相结合,过量的Si填充于气孔,从而得到无孔致密的反应烧结体。反应烧结SiC通常含有8%的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整初混合料中α-SiC和C的含量,α-SiC的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。以上是4种碳化硅陶瓷的烧结方式及特点,不难发现,它们具有各自不同的性能、特点,大家在选择时应根据它们不同的性能选择恰当的烧结方式,以便能够满足使用需求,实现理想的效果。碳化硅陶瓷结构性能稳定,耐高温性能好,并且可重复使用。耐磨SiC陶瓷生产工艺

碳化硅多孔陶瓷材料具有如下特点:(1)物理和化学性质稳定:碳化硅多孔陶瓷材料可以耐酸、碱腐蚀,也能够承受高温、高压,自身洁净状态好,不会造成二次污染,是一种绿色环保的功能材料;(2)过滤精度高,再生性能好:用作过滤材料的多孔陶瓷材料具有较窄的孔径分布范围和较高的气孔率与比表面积,被过滤物与陶瓷材料充分接触,其中的悬浮物、胶体物及微生物等污染物质被阻截在过滤介质表面或内部,过滤效果良好。碳化硅多孔陶瓷过滤材料经过一段时间的使用后,用气体或者液体进行反冲洗,即可恢复原有的过滤能力。广西碳化硅陶瓷结构SiC还有优良的导热性。

碳化硅陶瓷的用途:1、能源环保,将煤气在高温下直接净化,可充分利 Hexolov热交换器用煤气的显热,比之常温净化可较大程度上提高热效率,将高温净化后的煤气直接用于燃气轮机发电,可以较大程度上提高供电效率,减低有害物的排量,节约用水。现代燃煤发电系统中燃气轮机设备的使用与环境保护的标准都要求实现高温燃气直接除尘。2、工业窑炉,轻工、建材、电子等行业大量使用各种工业窑炉,采用不同材质碳化硅窑具的组合,可以大幅度减少窑具重量及其所占据的空间,提高能量利用率,减轻工人劳动强度。

热压烧结(HP),对共价键难烧材料如Si3N4、BN、二硼化锆(ZrB2)需要在加热过程中给予外加机械力,使其达到致密化,此种烧结方式为热压烧结,分为单向加压和双向加压。热压烧结的特点是可以低于常压烧结温度100~200℃的条件下接近理论密度,同时提高制品的性能如透明性、电导率及可靠性。热压烧结目前在国内AlON、YAG等透明陶瓷、BN可切削陶瓷达到或接近国际水平。但是热压烧结通常只能制造形状单一产品,并且会加大后期的加工成本,因此该烧结方式制造成本较高。化工、冶金,碳化硅材料对铁水、熔渣和碱金属的侵蚀有高的抗力及高导热和耐磨损的特性。

碳化硅主要有两种晶体结构,即立方晶系的β- SiC和六方晶系的- SiC。碳化硅晶体的基本结构单元是相互穿插的SiC和CSi四面体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。由于四面体堆积次序的不同可以形成不同的结构,已发现数百种变体。一般采用字母C(立方)、H(六方)、R(菱方)米表示其晶格类型,并用单位晶胞中所含的层数以示区别,例如nH表示沿c轴有n层重复周期的六方晶系结构,而mR则表示沿c轴有m层重复周期的菱面体结构,因此,玻璃相的特性对烧结所得微观结构影响很大。液相法主要包括以下几种:溶胶—凝胶法、聚合物热分解法和溶剂热法。定制碳化硅陶瓷制造商

高温碳化硅陶瓷是新型航空材料国大飞机项目的关键技术之一。耐磨SiC陶瓷生产工艺

20世纪80年代到90年代初,许多现代陶瓷理论和工艺在精细陶瓷的制备中得到应用。利用和金属材料的相变理论、仿生学等学科的交叉使得材料的性能得到了大幅的提高,研制的纤维补强复相陶瓷,陶瓷基复合材料的韧性得到较大提高,通过仿生学在精细陶瓷制备工艺中得到应用,层状材料得到较大发展。聚合物裂解转化、化学气相沉(渗)积、溶胶工艺的采用,使得特种纤维的制造、连续纤维复合材料制备技术快速发展。纳米技术在陶瓷中的应用使材料性能发生根本性变化,使某些陶瓷具有超塑性或使陶瓷的烧结温度较大程度上降低。耐磨SiC陶瓷生产工艺

与碳化硅陶瓷相关的**
信息来源于互联网 本站不为信息真实性负责