在等离子增强化学气相沉积(PECVD)工艺中,由等离子体辅助化学反应过程。在等离子体辅助下,200 到500°C的工艺温度足以实现成品膜层的制备,因此该技术降低了基材的温度负荷。等离子可在接近基片的周围被激发(近程等离子法)。而对于半导体硅片等敏感型基材,辐射和离子轰击可能损坏基材。另一方面,在远程等离子法中,等离子体与基材间设有空间隔断。隔断不仅能够保护基材,也允许激发混合工艺气体的特定成分。然而,为保证化学反应在被激发的粒子真正抵达基材表面时才开始进行,需精心设计工艺过程。化学气相沉积法是一种利用化学反应的方式,将反应气体生成固态的产物,并沉积在基片表面的薄膜沉积技术。山东叉指电极真空镀膜加工平台
真空镀膜:真空涂层技术发展到了现在还出现了PCVD(物理化学气相沉积)、MT-CVD(中温化学气相沉积)等新技术,各种涂层设备、各种涂层工艺层出不穷。目前较为成熟的PVD方法主要有多弧镀与磁控溅射镀两种方式。多弧镀设备结构简单,容易操作。多弧镀的不足之处是,在用传统的DC电源做低温涂层条件下,当涂层厚度达到0。3um时,沉积率与反射率接近,成膜变得非常困难。而且,薄膜表面开始变朦。多弧镀另一个不足之处是,由于金属是熔后蒸发,因此沉积颗粒较大,致密度低,耐磨性比磁控溅射法成膜差。可见,多弧镀膜与磁控溅射法镀膜各有优劣,为了尽可能地发挥它们各自的优越性,实现互补,将多弧技术与磁控技术合而为一的涂层机应运而生。在工艺上出现了多弧镀打底,然后利用磁控溅射法增厚涂层,较后再利用多弧镀达到较终稳定的表面涂层颜色的新方法。中山等离子体增强气相沉积真空镀膜外协膜厚决定于蒸发源的蒸发速率和时间(或决定于装料量),并与源和基片的距离有关。
磁控溅射一般金属镀膜大都采用直流溅镀,而不导电的陶磁材料则使用RF交流溅镀,基本的原理是在真空中利用辉光放电(glowdischarge)将氩气(Ar)离子撞击靶材(target)表面,电浆中的阳离子会加速冲向作为被溅镀材的负电极表面,这个冲击将使靶材的物质飞出而沉积在基板上形成薄膜。磁控溅射主要利用辉光放电(glowdischarge)将氩气(Ar)离子撞击靶材(target)表面,靶材的原子被弹出而堆积在基板表面形成薄膜。溅镀薄膜的性质、均匀度都比蒸镀薄膜来的好,但是镀膜速度却比蒸镀慢比较多。新型的溅镀设备几乎都使用强力磁铁将电子成螺旋状运动以加速靶材周围的氩气离子化,造成靶与氩气离子间的撞击机率增加,提高溅镀速率。
PECVD系统的气源几乎都是由气体钢瓶供气,这些钢瓶被放置在有许多安全保护装置的气柜中,通过气柜上的控制面板、管道输送到PECVD的工艺腔体中。在淀积时,反应气体的多少会影响淀积的速率及其均匀性等,因此需要严格控制气体流量,通常采用质量流量计来实现精确控制。PECVD反应过程中,反应气体从进气口进入炉腔,逐渐扩散至衬底表面,在射频源激发的电场作用下,反应气体分解成电子、离子和活性基团等。分解物发生化学反应,生成形成膜的初始成分和副反应物,这些生成物以化学键的形式吸附到样品表面,生成固态膜的晶核,晶核逐渐生长成岛状物,岛状物继续生长成连续的薄膜。在薄膜生长过程中,各种副产物从膜的表面逐渐脱离,在真空泵的作用下从出口排出。真空镀膜中离子镀的镀层棱面和凹槽都可均匀镀复,不致形成金属瘤。
磁控溅射由于其优点应用日趋增长,成为工业镀膜生产中主要的技术之一,相应的溅射技术与也取得了进一步的发展。非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域,具有诱人的成膜效率和经济效益,实验简单方便。真空镀膜镀料离子的迁移:由气化源供出原子、分子或离子经过碰撞以及高压电场后,高速冲向工件。中山等离子体增强气相沉积真空镀膜外协
真空镀膜被称为可以在任何基板上沉积任何材料的薄膜技术。山东叉指电极真空镀膜加工平台
利用PECVD生长的氧化硅薄膜具有以下优点:1.均匀性和重复性好,可大面积成膜,适合批量生长2.可在低温下成膜,对基底要求比较低3.台阶覆盖性比较好 4.薄膜成分和厚度容易控制,生长方法阶段 5.应用范围广,设备简单,易于产业化。评价氧化硅薄膜的质量,简单的方法是采用BOE腐蚀氧化硅薄膜,腐蚀速率越慢,薄膜质量越致密,反之,腐蚀速率越快,薄膜质量越差。另外,沉积速率的快慢也会影响到薄膜的质量,沉积速率过快,会导致氧化硅薄膜速率过快,说明薄膜质量比较差。山东叉指电极真空镀膜加工平台