碳化硅陶瓷高温力学性能优良、抗氧化性能强、耐磨损性能好、热稳定性能佳、导热率大,在石油、化工、汽车、矿业等领域都有较为普遍的应用。关于碳化硅陶瓷的制备方法,小编给大家总结了超细碳化硅粉体和碳化硅陶瓷的制备方法!1、超细碳化硅粉体的制备方法:近年来,在高新技术领域发展起来的超细碳化硅粉体制备的方法,主要归为三种:固相法、液相法和气相法。固相法主要包括以下几种:碳热还原法、Si与C直接反应法(包括高温自蔓延合成法和机械合金化法)。液相法主要包括以下几种:溶胶—凝胶法、聚合物热分解法和溶剂热法。气相法主要包括以下几种:气相反应沉积法(CVD)、等离子体法、激光诱导气相法。碳化硅陶瓷的用途:原子能工业用碳化硅复合材料。北京碳化硅陶瓷平台
虽然目前固体无模成型设备昂贵、技术封闭、材料性能不理想,但其与现代智能技术结合将进一步提高陶瓷制备工业的水平,是成型技术发展的主要方向。先进陶瓷的烧结技术,陶瓷坯体通过烧结促使晶粒迁移、尺寸长大、坯体收缩、气孔排出形成陶瓷材料,根据烧结过程中不同的状态,分为固态烧结和液相烧结。先进陶瓷的烧结技术按照烧结压力分主要有常压烧结、无压烧结、真空烧结以及热压烧结、热等静压烧结、气氛烧结等各种压力烧结。近些年通过特殊的加热原理出现微波烧结、放电等离子烧结、自蔓延烧结等新型烧结技术。北京碳化硅陶瓷平台SiC陶瓷的力学性能还随烧结添加剂的不同而不同。
进入21世纪,功能陶瓷的研究也得到了国家和各科研院所的高度重视。从1995—2015年我国先进陶瓷产值及预测(图1)可以看出,我国先进陶瓷产业进入了快速发展期,预计到2015年产值可达到450亿元。精密小尺寸产品、大尺寸陶瓷器件的成型、烧结技术、低成本规模化制备技术,陶瓷加工系统等领域不断打破国外垄断和技术封锁。例如凝胶注模工艺生产的大尺寸熔融石英陶瓷方坩埚打破了美国赛瑞丹、日本东芝和法国维苏威3大公司的技术垄断,在2007年率先实现国产化,通过近5年的不断发展,已经形成110~1100mm系列产品,产能居于全球第1位。
近年来,为进一步提高碳化硅陶瓷的力学性能,研究人员进行了碳化硅陶瓷的热等静压工艺的研究工作。研究人员以B和C为添加剂,采用热等静压烧结工艺,在1900℃便获得高密度SiC烧结体。更进一步,通过该工艺,在2000℃和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。研究表明:当SiC粉末的粒径小于0.6μm时,即使不引入任何添加剂,通过热等静压烧结,在1950℃即可使其致密化。如选用比表面积为24m2/g的SiC超细粉,采用热等静压烧结工艺,在1850℃便可获得高致密度的无添加剂SiC陶瓷。碳化硅喷嘴在安装时,不得对喷头进行拆装、改动,并严禁给喷头附加任何装饰性涂层。
SiC陶瓷不只具有优良的常温力学性能,如高的抗弯强度、优良的抗氧化性、良好的耐腐蚀性、高的抗磨损以及低的摩擦系数,而且高温力学性能(强度、抗蠕变性等)是已知陶瓷材料中较佳的。热压烧结、无压烧结、热等静压烧结的材料,其高温强度可一直维持到1600℃,是陶瓷材料中高温强度较好的材料。抗氧化性也是所有非氧化物陶瓷中较好的。别名金刚砂。稀土氧化物如Y2O,同样可以作为碳化硅陶瓷的烧结助剂,通过液相烧结的途径获得致密的碳化硅。由于其液相烧结是通过玻璃相的形成来降低孔隙率,提高致密度的。碳化硅陶瓷的用途:碳化硅用作磨料,可用来做磨具。北京碳化硅陶瓷平台
全世界已有65%以上的大型高炉采用了氮化硅结台碳化硅材料作为炉身材料。北京碳化硅陶瓷平台
液相反应法生产的粉料粒径小、活性高、化学组成便于控制,化学掺杂方便,能够合成复合粉体,主要包括化学沉淀法、溶胶——凝胶法、醇盐水解法、水热法、溶剂蒸发法。气相反应法包括物理的气相沉积和化学气相沉积2种。与液相反应法相比,气相反应制备的粉体纯度高、粉料分散性好、粒度均匀,但是投资较大、成本高。随着纳米技术的发展,近10年来,粉体表面积大、球形度高、粒径分布窄等特点,为高性能陶瓷提供了基础保障。其中近几年兴起的冲击波固体合成法可以较大程度上降低反应温度,提高粉体活性。北京碳化硅陶瓷平台
上海禹贝精密陶瓷有限公司致力于电子元器件,以科技创新实现***管理的追求。禹贝陶瓷深耕行业多年,始终以客户的需求为向导,为客户提供***的氧化铝陶瓷,碳化硅陶瓷,氧化锆陶瓷,氮化硅陶瓷。禹贝陶瓷致力于把技术上的创新展现成对用户产品上的贴心,为用户带来良好体验。禹贝陶瓷始终关注电子元器件行业。满足市场需求,提高产品价值,是我们前行的力量。