车削工艺也是齿轮轴加工中的常见工艺,通常吧热处理后的车削称为硬车。它是指用车削的工艺方法作为淬硬钢的终加工或精加工。随着高硬度切削材料和相关机床的发展,PCBN刀具、陶瓷刀具或新型硬质合金刀具在新型车床或加工中心上对淬硬钢进行车削,其加工质量可以达到精磨的水平。大多数硬车的应用是替代磨削,目前,车削的硬度极限可达到68HRC。在发达国家硬车技术已被普遍应用,可加工各种零件,是代替磨削的经济性加工工艺。可见硬车工艺正在得到越来越普遍的应用。因此对齿轮轴的心部要求有一定的强度和韧性,有较高的疲劳极限和抗多次冲击能力。常州齿轮轴零部件
珩磨工艺除了精度高之外,还有一个特点就是质量好。其加工表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而进步了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的均匀磨削压力小,这样工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。 磨削比珩磨切削压力大,磨具和工件是线接触,有较高的相对速度。因而会在局部区域产生高温,会导致零件表面结构的不可逆破坏。可见珩磨相比磨削而言,既有磨削的高精度,又可以避免磨削对工件带来的损伤。上海高精度齿轮轴斜齿圆柱齿轮大、小齿轮两个轴线互相平行。
在考虑磨削余量前,首先要合理选择磨削余量形式。为了让齿轮的齿形变形量得到彻底的消除,并使齿轮具有一定的磨齿精度,那么一定要合理选择磨齿余量形式。常用的磨齿留磨余量包括:在齿轮的齿面和齿轮根部位置都保留一定的磨削余量。这种方法的优点在于:齿轮的齿面及其齿轮的根部同时受到了磨削,这不仅使得齿轮的齿面及其根部能够光滑连接与过渡,还大幅提高了齿轮根部的抗弯曲强度,能够有效减轻齿轮根部热应力比较集中的问题。采用这种方法进行滚齿的时候,滚刀无需带触角,因此,齿轮的根部位置无需存在挖根量。这种方法的缺点在于:一方面,在砂轮的齿顶部部分存在较大的磨削力,并且,这种方法的生产效率整体偏低。另一方面,采用这种方法会使得齿轮的根部位置存在较大的磨削接触面,并且冷却通常不够充分,因此,时常发生磨糊、磨裂等不良现象,这将严重影响齿轮的疲劳强度以及抗弯曲强度,让齿轮的使用寿命大幅缩短。因此,需要慎重选择这种磨削余量保留形式。
珩磨工艺的切削过程有几种,其中的定压进给珩磨中,进给机构以恒定的压力压向孔壁,分三个阶段。首先是脱落切削阶段这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面积很小,接触压力大,孔壁的凸出部分很快被磨往。而油石表面因接触压力大,加上切屑对油石粘结剂的磨耗,使磨粒与粘结剂的结合强度下降,因而有的磨粒在切削压力的作用下自行脱落,油石面即露出新磨粒,此即油石自锐。第二阶段是破碎切削阶段随着珩磨的进行,孔表面越来越光,与油石接触面积越来越大,单位面积的接触压力下降,切削效率降低。同时切下的切屑小而细,这些切屑对粘结剂的磨耗也很小。因此,油石磨粒脱落很少,此时磨削不是靠新磨粒,而是由磨粒尖部切削。因而磨粒尖部负荷很大,磨粒易破裂、崩碎而形成新的切削刃。第三阶段为堵塞切削阶段继续珩磨时油石和孔表面的接触面积越来越大,极细的切屑堆积于油石与孔壁之间不易排除,造成油石堵塞,变得很光滑。因此油石切削能力极低,相当于抛光。若继续珩磨,油石堵塞严重而产生粘结性堵塞时,油石完全失往切削能力并严重发热,孔的精度和表面粗糙度均会受到影响。此时应尽快结束珩磨。这是定压进给珩磨的工艺过程。齿轮轴的形状特征原则轴线水平放置,可把各段形体的相对位置表示清楚。又能反映出轴上轴肩、退刀槽等结构。
在变速箱齿轮机加工的工艺中,还有以下工艺:珩磨加工是运用无定形切削角度,对硬质齿轮进行终精加工的工艺。珩磨加工不仅具有很高的经济性,而且能使被加工齿轮具有低噪音的光滑表面。相对于研磨,珩磨加工的切削速度很低(0,5至10 m/s),因此避免了切削发热对齿轮加工的损害。更确切的说,在被加工齿面上产生的内应力,对设备的承载能力产生一定的积极作用。钻孔是一种旋转切削的加工工艺。刀具的转轴和被加工孔的中心是在轴向是完全吻合的,且与刀具在轴向的进给方向是一致的。切削运动的主轴应于刀具保持一致,和进给运动方向无关。内孔研磨是一种无定形切削角度的机械加工工艺。比较其他的切削加工工艺,研磨对硬质金属具有很高的尺寸和成形精度,尺寸精度(IT 5—6),很小的震纹痕高质量的表面精度(Rz = 1-3μm)等优点。绪声动力在齿轮加工工艺开发方面有丰富经验,欢迎垂询。齿轮轴主要承受交变载荷,冲击载荷,剪切应力和接触应力大。南通高精度齿轮轴
-般为金属圆杆状,各段可以有不同的直径。机器中作回转运动的零件就装在轴上。常州齿轮轴零部件
变速箱轴的加工工艺中,零件的定位和装夹时首要考虑的问题。轴类零件加工的定位基准和装夹主要有以下三种方式:首先,以工件的中心孔定位:在轴的加工中,零件各外圆表面、端面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其他加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够尽可能多地在一次装夹中加工出多个外圆和端面。其次、以外圆和中心孔作为定位基准(一夹一顶):用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件较常见的一种定位方法。再次、以两外圆表面作为定位基准:在加工空心轴的内孔时,不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。绪声动力在轴的加工工艺开发上有丰富经验。常州齿轮轴零部件
绪声动力科技有限公司由一群在动力和传动领域从业近二十年,拥有设计、制造、运营等方面经验,有理想有追求的专业人员于2021年3月成立,致力于创建动力总成领域线上、线下相融合的新业务模式。绪声动力立足于中国,整合全球资源,为汽车动力总成领域需求方和供给方搭建全球供应链服务平台。除了为客户提供产品和设计,还可以根据客户图纸推荐合格供应商生产,以及为客户的现有供应商提供现场支持服务,实现降本增效,提升交付水平和稳定性。绪声动力通过资源协作和专业服务,助力企业从研发到量产的整个产业化过程,包括开发设计、仿真计算、测试标定、制造工艺、精益生产、智能制造、项目管理、质量管理、设备管理、仓储物流、工业工程、采购寻源、供应商管理以及售后等。在促进汽车零部件行业在新形势下高效发展的同时,我们也致力于推动广大行业内人员的转型发展,通过在专长领域展现能力,在新的领域拓展技能,充分实现自我价值。打造具有中国本土优势的专业供应链平台,服务全球业务伙伴。