H-CloudCDP基于TrueCDP技术,实现周期内高级别的数据保护,备份恢复机制为CDP中为严谨的:H-CloudCDP功能即使抓取应用服务器写入磁盘的每个I/O并存入系统日志中,同时给予每笔记录时间戳记;在需要进行数据恢复时,根据日志内容,将数据恢复至保护期内任意时间点状态,这种机制才能实现真正CDP:回拨一个14天的时间框架内恢复任意时间点所有I/O到选定的虚拟磁盘的日志和时间戳无需停顿或中断应用程序无需主机代理易于打开和恢复恢复手段包括分离实体数据或覆盖原数据实时镜像技术(Synchronous Mirroring)。超融合架构应用场景
超融合技术的未来发展趋势:更多的行业应用:随着超融合技术的不断发展和成熟,未来它将应用于更多的行业和领域,如金融、医疗、教育等。更高的性能:随着技术的进步,超融合将提供更高的性能,以满足更多业务需求。例如,支持更多的虚拟机数量、更高的存储容量和更快的网络速度。更智能的管理:超融合将通过人工智能和机器学习等技术实现更智能的管理和维护。例如,自动化的资源分配、故障诊断和预测性维护等。更强的安全性:随着网络安全问题的日益突出,超融合将提供更强的安全保护功能,如数据加密、访问控制和安全审计等。更环保节能:超融合将采用更环保和节能的技术和设备,以降低能源消耗和碳排放,实现绿色数据中心的目标。佛山超融合与云计算的区别增强生存能力使用物理上单独的节点。
随机写加速器(RandomWriteAccelerator):我们知道在应用层面关键业务多少基于OLTP类型,这些复杂分布式,随机性写入对磁盘提出更高的性能要求,而另一方面,传统存储多少基于不同级别的RAID技术,写入的数据根据不同RAIDLEVEL会产生额外的“写惩罚”效应。H-Cloud新引入的“RandomWriteAccelerator”(简称随机写加速器)技术能够有效的规避这些弊端,再次提升存储或磁盘性能数倍。随机写加速器能够把那些关键业务随机性写入的IO,通过底层日志空间建立连续的“顺序性”索引表,然后通过“逻辑寻址”(LBA)伪装成顺序写入,通过把“随机性”变通为“顺序”写入机制能够协调高速缓存再次提升存储性能数倍,尤其针对随机写密集而后端使用RAID5传统架构。
虚拟磁盘池是H-Cloud提供存储阵列的整合功能。如前所述,.池可能包括多种品牌和型号的磁盘存储层,从而有效地创建不同的价格、性能、容量特性。池是存储虚拟化的基础,能够迅速从块空间上的物理设备创建虚拟磁盘(或逻辑)。这些虚拟磁盘可以使用一个中间管理界面,然后分配给应用服务器的整个物理或虚拟的SAN与特定的访问权限,可能在不同的服务器,虚拟机或集群应用共享。H-Cloud存储池的上限是到PB级,取决于所选择的产品级别。我们知道在应用层面关键业务多少基于OLTP类型,这些复杂分布式,随机性写入对磁盘提出更高的性能要求。
从扩展性角度分析,由于H-Cloud支持多种主机操作系统和多种群集技术,因此未来用户新增不同业务和不同的主机平台时,都可利用已构建好的容灾平台,真正实现“业务持续性企业统一虚拟化存储平台”的技术目标。从性能方面分析,除了已建议的高性能虚拟化存储平台和H-Cloud容灾软件外,我们还需要考虑到主机端的I/O负载均衡问题,因此,我们建议在服务器端配置H-Cloud的MPIO负载均衡软件,实现多个I/O通道和路径之间的负载均衡与错误保护,使整个容灾虚拟化存储平台的性能达到效果。自动存储分层:通过监测I / O访问,确定其使用的频率,然后动态信息块移动到合适的类或存储设备层。天津超融合服务器架构
通过 H-Cloud 全闪存阵列所组建的虚拟化存储管理平台可以对不同的存储以及应用进行归类,从而实现匹配。超融合架构应用场景
恢复机制:
当存储服务器或实体存储设备故障发生时,为了完整实现存储网络的高可用自动备份机制,应用程序主机可以透过多重存取路径功能(multi-Passing),自动经数据路径切换到备援 H-Cloud Server。切换过程中,应用程序作业不会中断,而在故障修复后,可以将实体的存储路径切换回原始实体路径。此外,H-Cloud 高可用的构架下,由于存储服务器属于Active/Active备份方式,如果主机端多重存取路径功能支持负载均衡,则可将数据存取作业,分散至多台存储服务器。
H-Cloud 在业内首先采用的自动修复功能-Auto repair重新诠释了高可用理念,在之前两个运行镜像的虚拟卷,其中一个故障,而另一个则自动接管,Auto repair机制在于丢弃故障虚拟卷,重新建立镜像关系到另一个健康的磁盘池或 H-Cloud 节点,这一切均是自动且透明的。 超融合架构应用场景