所述玻璃组合物还可以包含除氧化锂之外的碱金属氧化物(例如,如na2o和/或k2o),以及包含碱土金属氧化物(例如,如mgo和/或cao),其量使得玻璃组合物具有化学和机械耐久性,并且液相线粘度足以允许使用熔合下拉成形工艺来生产所述玻璃组合物。另外,玻璃组合物中存在的碱金属氧化物促进了通过离子交换对玻璃组合物进行化学强化。在一些实施方式中,所述玻璃组合物可以包含p2o5、b2o3、或者p2o5和b2o3二者,其可以被包含到玻璃组合物中以提高液相线粘度、抗损坏性或同时提高液相线粘度和抗损坏性。本文将描述玻璃组合物的各个实施方式并且参考具体的实例来进一步说明。如本文所用的术语“软化点”是指玻璃组合物的粘度为。如本文所用的术语“退火点”是指根据astmc598-93确定的温度,在该温度下,给定玻璃组合物的玻璃粘度为约。如本文所用的术语“t12”是指根据astmc598-93确定的温度,在该温度下,给定玻璃组合物的玻璃粘度为约1012泊。如本文所用的术语“应变点”和“t应变”是指根据astmc598-93确定的温度,在该温度下,给定玻璃组合物的玻璃粘度为约。术语“液相线温度”是指某温度,在高于该温度时,玻璃组合物完全为液体并且玻璃的组成组分没有结晶。耐磨地坪材料质量问题;聚氨酯耐磨粉厚度
活塞部200可包括:形成开口110的底面的垫块210;升降垫块210的活塞块220;设置有活塞块220的支撑架230。垫块210可具有能够形成开口110的底面的形状与大小。垫块210可称为活塞台。垫块210可配置在开口110的内部。垫块210侧面与开口110的内壁111之间可设置间距。此时,间距的大小可以是数毫米左右。垫块210上面可形成凹陷槽211。在凹陷槽211可设置加热块212,垫块210可以是诸如塑料树脂的材质,而加热块212可以是金属材质。在加热块212的内部可设置热线(未示出)。热线接收供电可被加热至数十至数百℃的温度。在加热块212的上面可附着金属材质的覆盖块(未示出)。在覆盖块的上部可装载粉末p。若垫块210热膨胀,则大小能够以水平方向变大数毫米左右。对此,可由充裕的间隔容纳该体积变化。在垫块210的侧面可凹陷形成密封部插入槽213。密封部插入槽213可沿着垫块210的侧面,例如,周围方向延伸。活塞块220可配置在开口110的下部,并且可向开口110的下方延伸。活塞块220能够以上下方向伸缩地形成。在活塞块220的上端可支撑垫块210。支撑架230覆盖开口210的下面。活塞块220可贯通支撑架230。以下,详细说明根据本发明的实施例的密封部300。密封部300可设置在垫块210的侧面。河南涂料耐磨粉作用提高粉末的流动性—颗粒形态准球形及细化(2μm)处理,防止粉末颗粒粘连,易于流化和分散稳定性。
本发明的有利技术性实际效果取决于:本发明出示了一种低热膨胀系数的的中**温节能型玻璃粉以及制取方式和运用,按本发明的原料配制制取的玻璃粉按国家标准制样检测线膨胀系数α和变软温度ts检测,检测其线膨胀系数α(20-600℃)在~×10-6/℃中间,其变软温度ts在720℃~805℃中间,做为微晶玻璃表面的牙釉质保护层厚度,其线膨胀系数与微晶玻璃非常,变软温度稍低,可提升微晶玻璃产品的冲击韧性,改进其表面物理性能和热特性。落实措施方法以便使本发明的目地、技术规范及优势更为清晰搞清楚,在其中叙述了完成本发明选用的执行例。执行例一一种中**温节能型玻璃粉制取方式包含以程:s1,材料准备混磨,称量品质百分数为65wt%的sio2、12wt%的al2o3、6wt%的li2o、5wt%的b2o3、3wt%的zro2、4wt%的mgo、3wt%的zno和2wt%的bao原料,各原料粒度分布的颗粒物尺寸操纵在低于10μm,混和匀称后,干式球磨机6小时;s2:烧造熔块,将流程s1球磨机后的原料开展烧造、水淬、风干;实际的,该熔化温度甄选为1500~1600℃中间,隔热保温30min。s3:制玻璃粉,将流程s2风干后的原料开展湿式球磨机6小时后风干筛选;实际的,细磨时。
摩尔%))大于或等于-2或者甚至大于或等于-1。在一些实施方式中,玻璃组合物可以具有足够的p2o5的量,使得(al2o3(摩尔%)–r2o(摩尔%)–ro(摩尔%)–p2o5(摩尔%))大于或等于-2且小于或等于2,或者甚至大于或等于-1且小于或等于1。在一些实施方式中,当p2o5(摩尔%)/[(al2o3-r2o–ro)](摩尔%)的比值在以下范围时,p2o5的存在还实现了上述效果,所述范围为、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、或,以及其间的所有范围和子范围。在一些实施方式中,玻璃组合物不包含p2o5,并且如前所述,在不存在p2o5时,玻璃组合物的(al2o3(摩尔%)–r2o(摩尔%)–ro(摩尔%))大于或等于0且小于或等于2,或者甚至大于或等于0且小于或等于1。p2o5的量也与由玻璃组合物制成的玻璃的可离子交换性有关。增加玻璃组合物中的p2o5的量可以通过在玻璃网络中建立空间而增加玻璃的离子交换速率。p2o5还可以有助于增强由玻璃组合物制成的玻璃的抗损坏性。然而,增加玻璃组合物中的p2o5的量降低了可通过玻璃的离子交换强化获得的压缩应力的量。另外,增加过高的p2o5的量可造成铝磷酸盐(alpo4)在高温下结晶。增强漆膜硬度—提升抗刮伤性和耐划性,粒子的硬度为莫氏70°。
大于或等于3摩尔%且小于或等于6摩尔%的p2o5,或者甚至是大于或等于%且小于或等于%的p2o5。因此,应理解,在玻璃组合物中不必存在p2o5。然而,当在玻璃组合物中包含p2o5时,玻璃组合物中的p2o5的量一般小于约20摩尔%。氧化硼(b2o3)是一种熔剂,其可被加入到玻璃组合物中以降低给定温度下(例如,对应于200泊粘度的温度,在该温度下,玻璃熔化并且该温度通常是玻璃熔化炉中的高温度)玻璃的粘度,从而改进玻璃的品质和可成形性。b2o3的存在也可以提高由玻璃组合物制成的玻璃的抗损坏性。然而,已经发现,b2o3的添加降低了玻璃组合物中的钠和钾离子的扩散率,这进而不利地影响所得玻璃的离子交换性能。具体地,已经发现,相对于不含硼的玻璃组合物,b2o3的添加可以增加在玻璃中实现给定层深度所需的时间。b2o3的添加还可使进行离子交换的温度升高,以为了实现在给定的持续时间内在玻璃中达到目标层深度所必需的离子交换速率。b2o3对玻璃的离子交换性能的影响可以通过向玻璃组合物添加更大量的li2o和al2o3来得到补偿,其可以补偿玻璃组合物中的b2o3的存在。例如,已经确定。耐磨陶瓷无法满足机械性能要求时,这种材料会是完美的选择,具有更优的性能价格比。河南涂料耐磨粉作用
耐磨粉用在涂料里硬度怎么样。聚氨酯耐磨粉厚度
在实施方式中,玻璃组合物可以包含大于或等于约%且小于或等于约%的k2o,大于或等于约%且小于或等于约1摩尔%的k2o,或者甚至大于或等于约%且小于或等于约%的k2o。因此,应理解,在玻璃组合物中不必存在k2o。然而,当在玻璃组合物中包含k2o时,k2o的量一般小于约%。玻璃组合物还可以包括磷氧化物(p2o5)。p2o5的存在通过玻璃组合物中的莫来石结晶而增加了玻璃组合物的液相线粘度。当al2o3的量比玻璃组合物中的碱金属氧化物(r2o摩尔%)和碱土金属氧化物(ro摩尔%)之和大超过2摩尔%,或者甚至超过1摩尔%时,玻璃组合物的液相线温度迅速升高。当al2o3(摩尔%)比(r2o(摩尔%)+ro(摩尔%))多超过1摩尔%时,玻璃组合物中的p2o5的存在通过降低液相线温度并因此增加玻璃组合物的液相线粘度而补偿了过量的al2o3。在一些实施方式中,玻璃组合物可具有足以补偿过量al2o3的p2o5的量。例如,在一些实施方式中,玻璃组合物可以具有足够的p2o5的量,使得(al2o3(摩尔%)-r2o(摩尔%)-ro(摩尔%)-p2o5(摩尔%))小于或等于2或者甚至小于或等于1。在一些实施方式中,玻璃组合物可以具有一定的p2o5的量,使得(al2o3(摩尔%)–r2o(摩尔%)–ro(摩尔%)–p2o5。聚氨酯耐磨粉厚度