危险性:易挥发,易燃烧,刺激性。其蒸气与空气混合成炸裂性气体。遇到高热、明火能燃烧或炸裂,与氧化剂铬酸、次氯酸钙、过氧化氢、硝酸、硝酸银、过氯酸盐等反应剧烈,有发生燃烧炸裂的危险。在火场中,受热的容器有炸裂危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。侵入途径:吸入、食入、经皮吸收。健康危害:本品为神经系统系统抑制剂。首先引起兴奋,随后抑制。防护措施工程控制:密闭操作,加强通风。呼吸系统防护:一般不需要特殊防护,高浓度接触时可佩带过滤式防毒面具(半面罩)。眼睛防护:戴化学安全防护眼镜。身体防护:穿防静电的胶布防毒衣。手防护:戴一般作业防护手套(橡胶手套)。其他防护:工作完毕,淋浴更衣。保持良好的卫生习惯。乙醇的生产和使用可以减少对石油和化石燃料的依赖。重庆无水乙醇购买
甲醇被大众所熟知,具有毒性。工业酒精中大约含有4%的甲醇,若被不法分子当作食用酒精制作假酒,饮用后,会产生甲醇中毒。甲醇的致命剂量大约是70ml。甲醇的毒性对人体的神经系统和血液系统影响较大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应,甲醇蒸气能损害人的呼吸道粘膜和视力。在甲醇生产工厂,中国有关部门规定,空气甲醇的浓度限制为PC-stel=50mg/m3,PC-TWA=25mg/m3,在有甲醇气的现场工作须戴防毒面具、工厂废水要处理后才能排放,允许含量小于200mg/L的甲醇。甲醇的中毒机理是,甲醇经人体代谢产生甲醛和甲酸(俗称蚁酸),然后对人体产生伤害。常见的症状是,先是产生喝醉的感觉,数小时后头疼,恶心,呕吐,以及视线模糊。宜宾燃料甲醇哪个牌子好乙醇也可以用于生产燃气,取代传统的煤气和天然气等。
煤基原料包括煤炭、焦炭、焦炉气、煤层气以及中煤和煤矸石等,主要通过部分氧化或蒸汽转化等方法制成合成气用于合成甲醇。煤作为制备甲醇合成气的传统原料,由于环保和气体净化等方面问题,成本相对较高,但对缺油少气富煤的国家和地区(如中国和南非)仍是主要的原料路线。从长远发展的趋势来看,煤是世界化石能源储藏量较多的能源,远远超过天然气和石油的储量。随着大型煤气化和净化技术的发展,煤越来越成为合成甲醇的主要原料路线。特别需要指出的是,煤炭资源中的高硫劣质煤,是不能作为动力煤直接燃烧的,但通过气化脱硫后,可以作为合成甲醇燃料的原料,得到洁净利用。
乙醇、乙酸、苯酚都是含有羟基(—OH)的物质,它们都能与金属钠反应。但只有乙酸和苯酚能与氢氧化钠反应,只有乙酸能与碳酸钠反应。我们知道,物质的结构是决定有机物性质的主要因素。在乙醇、乙酸、苯酚中,虽然都含有羟基,都应可以电离出氢离子,但由于与羟基相连的原子团的影响,使氢电离的难易产生了差异,所以其酸性亦出现了差异。在乙醇中,由于乙基对羟基的影响:乙基是排电子基,且氧原子的电负性大于碳原子,因此,当乙基与羟基相连时,碳原子的电子云向氧原子转移,使氧原子的电子云密度增大,氧原子与氢原子的电子云重叠程度增大,氧氢原子间的共价键增强,所以,乙醇羟基中的氢原子虽可被金属钠取代,但通常情况下,乙醇并不能电离出氢离子,故乙醇不显酸性。乙醇可以用于保护植物免受病毒和细菌侵害。
⑴乙醛:乙醇氧化或气相脱氢生产乙醛曾是工业乙醇的主要用途。乙醛在工业上大量用于合成乙酸、丁醇、季戊的四醇等有机产品,也用于生产聚乙醛、三氯乙醛等产品。⑵乙胺:乙胺是由乙醇与氨经催化反应生成的,同时得到乙胺、二乙胺和三乙胺。乙胺、二乙胺可作溶剂,也可用来制造洗涤剂、润滑剂和橡胶促进剂、农药、染料、医药以及抗氧剂等。三乙胺除用作有机溶剂外,在合成树脂中可用作聚碳酸酯光气法的催化剂和四氟乙烯的阻聚剂,也可用作食品防腐剂、农药和染料生产的原料,工业上可用作高能燃料。⑶乙酸乙酯:由乙酸和乙醇酯化得到,是纤维素酯的低沸点溶剂,可用作人造革、炸裂物品、食品工业中的食用香精、纤维照像膜片及医药和染料等方面的原料。乙醇的生产可以使得农产品转化为能源,取代传统的化石燃料。泸州乙醇供应商
乙醇可溶于水,但不能在水中溶解过量的乙醇。重庆无水乙醇购买
乙醇的用途很广,可用乙醇制造醋酸、饮料、香精、染料、燃料等。医疗上也常用体积分数为70%~75%的乙醇作消毒剂等,在化工、医疗卫生、食品工业、工农业生产中都有普遍的用途。乙醇与二甲醚(即甲醚)互为官能团异构体。乙醇的用途很广,可以用于:溶剂;有机合成;各种化合物的结晶;洗涤剂;萃取剂;食用酒精可以勾兑白酒;用作粘合剂;硝基喷漆;清漆、化妆品、油墨、脱漆剂等的溶剂以及农药、医药、橡胶、塑料、人造纤维、洗涤剂等的制造原料、还可以做防冻剂、燃料、消毒剂等。75%的乙醇溶液常用于医疗消毒。体积分数99.5%以上的酒精称为无水酒精。生物学中的用途:叶绿体中的色素能溶在有机溶剂无水乙醇(或丙铜)中,所以用无水乙醇可以提取叶绿体中的色素。重庆无水乙醇购买
在乙酸分子中,由于羧基中的羟基氧原子的P电子云可以跟羰基里的π电子云从侧面发生重叠,形成了P-π共轭,使羟基氧原子的电子云向羰基转移,使氧、氢原子间的电子云密度降低,H-O键极性增强,氧氢键容易断裂,羟基氢原子容易电离,使乙酸显示出较强的酸性。显然苯酚和乙酸都有酸性,但由于苯酚中苯环虽然可以使羟基氧原子电子云密度降低,但这种作用较弱。所以,苯酚所显示的酸性较弱,甚至比碳酸还弱,不能使指示剂显色,不能与Na2CO3发生反应。而乙酸中虽然乙基使羰基电子云密度增大,但由于羰基氧原子的吸引和p-π共轭的形成,使羟基氧原子电子云密度降低的程度较苯酚强烈。因此,乙酸的酸性比苯酚强得多,可以使指示剂显色,也...