日本:S.Yoshida主持的Yoshida纳米机械项目主要进行以下二个方面的研究:⑴.利用改制的扫描隧道显微镜进行微形貌测量,已成功的应用于石墨表面和生物样本的纳米级测量;⑵.利用激光干涉仪测距,在激光干涉仪中其开发的双波长法限制了空气湍流造成的误差影响;其实验装置具有1n m的测量控制精度。日本国家计量研究所(NRLM)研制了一套由稳频塞曼激光光源、四光束偏振迈克尔干涉仪和数据分析电子系统组成的新型干涉仪,该所精密测量已涉及一些基本常数的决定这一类的研究,如硅晶格间距、磁通量等,其扫描微动系统主要采用基于柔性铰链机构的微动工作台。纳米力学测试可以帮助研究人员了解纳米材料的变形和断裂机制,为纳米材料的设计和优化提供指导。江西微纳米力学测试原理
纳米纤维已经展现出各种有趣的特性,除了高比表面积-体积比,纳米纤维相比于块状材料,沿主轴方向有更突出的力学特性。因此纳米纤维在复合材料、纤维、支架(组织工程学)、药物输送、创伤敷料或纺织业等领域是一种非常有应用前景的材料。纳米纤维机械性能(刚度、弹性变形范围、极限强度、韧性)的定量表征对理解其在目标应用中的性能非常重要,而测量这些参数需要高度专业画的仪器,必须具备以下功能:以亚纳米的分辨率测量非常小的变形;在测量的时间量程(例如100 s)内在纳米级的位移下保持高度稳定的测量系统;以亚纳米分辨率测量微小力;处理(捡取-放置)纳米纤维并将其放置在机械测试仪器上。江西微纳米力学测试原理面向未来,纳米力学测试将继续拓展人类对微观世界的认知边界。
谱学技术微纳米材料的化学成分分析主要依赖于各种谱学技术,包括紫外-可见光谱红外光谱、x射线荧光光谱、拉曼光谱、俄歇电子能谱、x射线光电子能谱等。另有一类谱仪是基于材料受激发的发射谱,是专为研究品体缺陷附近的原子排列状态而设计的,如核磁共振仪、电子自旋共振谱仪、穆斯堡尔谱仪、正电子湮灭等等。热分析技术,纳米材料的热分析主要是指差热分析、示差扫描量热法以及热重分析。三种方法常常相互结合,并与其他方法结合用于研究微纳米材料或纳米粒子的一些特 征:(1)表面成键或非成键有机基团或其他物质的存在与否、含量多少、热失重温度等(2)表面吸附能力的强弱与粒径的关系(3)升温过程中粒径变化(4)升温过程中的相转变情况及晶化过程。
纳米压痕获得的材料信息也比较丰富,既可以通过静态力学性能测试获得材料的硬度、弹性模量、断裂韧性、相变(畴变) 等信息,也可以通过动态力学性能测试获得被测样品的存储模量、损耗模量或损耗因子等。另外,动态纳米压痕技术还可以实现对材料微纳米尺度存储模量和损耗模量的模量成像(modulus mapping)。图1 是美国Hysitron 公司生产的TI-900 Triboindenter 纳米压痕仪的实物图。纳米压痕作为一种较通用的微纳米力学测试方法,目前仍然有不少研究者致力于对其方法本身的改进和发展。纳米力学测试是一种用于研究纳米尺度材料力学性质的实验方法。
中国计量学院朱若谷、浙江大学陈本永等提出了一种通过测量双法布里一boluo干涉仪透射光强基波幅值差或基波等幅值过零时间间隔的方法进行纳米测量的理论基础,给出了检测扫描探针振幅变化的新方法。中国科学院北京电子显微镜实验室成功研制了一台使用光学偏转法检测的原子力显微镜,通过对云母、光栅、光盘等样品的观测证明该仪器达到原子分辨率,较大扫描范围可达7μm×7μm。浙江大学卓永模等研制成功双焦干涉球面微观轮廓仪,解决了对球形表面微观轮廓进行亚纳米级的非接触精密测量问题,该系统具有0.1nm的纵向分辨率及小于2μm的横向分辨率。纳米力学测试技术为纳米材料在航空航天、汽车制造等领域的应用提供了有力支持。广西金属纳米力学测试原理
借助纳米力学测试,可以评估材料在微观尺度下的耐磨性和耐蚀性。江西微纳米力学测试原理
英国:国家物理研究所对各种纳米测量仪器与被测对象之间的几何与物理间的相互作用进行了详尽的研究,绘制了各种纳米测量仪器测量范围的理论框架,其研制的微形貌纳米测量仪器测量范围是0.01n m~3n m和0.3n m~100n m。Warwick大学的Chetwynd博士利用X光干涉仪对长度标准用的波长进行细分研究,他利用薄硅片分解和重组X光光束来分析干涉图形,从干涉仪中提取的干涉条纹与硅晶格有相等的间距,该间距接近0.2nm,他依此作为校正精密位移传感器的一种亚纳米尺度。Queensgate仪器公司设计了一套纳米定位装置,它通过压电驱动元件和电容位置传感器相结合的控制装置达到纳米级的分辨率和定位精度。江西微纳米力学测试原理