离子液体由阴、阳离子两部分组成, 阴离子通常有、、TFSI-、FSI-等,阳离子通常有吡咯类、咪唑类、哌啶类和季铵盐类等。离子液体具有挥发性极小、不燃、电化学稳定窗口宽、溶解能力强、热稳定性高等特点,既适合应用于高电压电解液,又适合制备阻燃型电解液,提高锂离子电池安全性。尽管如此, 由于纯离子液体黏度大,且与隔膜、电极材料的浸润性差,锂离子的迁移受到极大限制;另外,大多数的离子液体与碳基负极的兼容性差,因而,纯离子液体较难作 为电解液直接用于锂离子电池。实际上,离子液体通常与碳酸酯类、砜类或氟代醚类等溶剂混合使用来制备阻燃型高性能电解液。与碳酸酯混合使用配制阻燃型电解液的吡咯类离子液体有PYR14TFSI 或BMP-TFSI、N-丙基-N-甲基吡咯-二(三氟甲基磺酰)亚胺、N-乙基-2-甲氧基吡咯-双氟磺酰亚胺。KIM等报道与碳酸酯溶剂混合后电解液阻燃效果优异,且能保证LiFePO4/Li体系60 ℃高温的稳定运行。与碳酸酯混合的代表性哌啶类离子液体有N-甲基-N-丙基哌啶-二(三氟甲基磺酰)亚胺、1-乙基-1-甲基哌啶-二(三氟甲基磺酰)亚胺。双三氟甲烷磺酰亚胺锂作为六氟磷酸锂的升级产品。应用双三氟甲烷磺酰亚胺锂氯化锂干燥
一是推动医药企业智能化发展。引导企业创新发展理念,打造智能制造+绿色制造+共享平台”新商业模式,构建“共享智能工厂“新生态。二是推动装备制造**化发展。发展黑土地保护性耕作、秸秆还田收贮、收割机、深松机、整地机等农业机械,以及设施农业、畜禽屠宰等农牧及加工机械,打造农机装备产业链,发展创新平台,研发**装备。三是推动化工新材料创新发展。发展氯磺酰氰酸酯锂电池电解液新材料,推进双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)国产化,提升国际竞争力。四是推动冶金建材业绿色化发展。重视绿色制造,推进产品全生命周期的绿色管理进程,推进金钢钢铁低碳非高炉炼铁改造,发展绿色低碳冶金建材产业。绿色双三氟甲烷磺酰亚胺锂双三氟甲磺酰亚胺锂产品的国产化。
近日,马里兰大学Chunsheng Wang教授课题组牵头设计制备了全新的超高浓度的Zn离子水系电解质,应用于Zn离子电池,有效地抑制了枝晶的形成,从而***地增强电池性能和循环寿命。研究人员将1摩尔的双三氟甲烷磺酰亚锌(Zn(TFSI)2)、20摩尔双三氟甲烷磺酰亚胺锂(LiTFSI)和水溶剂混合配置成pH为中性的高浓度Zn离子电解质,随后与Zn负极组成半电池进行恒电流循环测试。结果显示,基于中性高浓度锌离子电解质的半电池循环次数可达500余次,即循环寿命长达170小时;相反,采用传统碱性电解质循环寿命大幅缩减至5小时。扫描电镜表征显示,采用中性高浓度锌离子电解质电池Zn电极表面循环反应前后均呈现光滑的表面,即没有枝晶形成,而采用碱性电解质的电池Zn电极则出现明显的“树突”状枝晶。
电池中的硫正极与电解液直接接触,因此在循环过程中会形成多硫化物,并诱导多硫化物溶解和穿梭。在锂为负极、双三氟甲烷磺酰亚胺锂(LiTFSI)为溶质的电池中,研究了高浓度、常规和稀释电解液对电池性能的影响。充放电曲线为典型的锂硫电池曲线,电压平台较短,对应Sg→Li2S4的转变;低电压的平台较长,对应Li2S4-→Li2S的转变。在标准的1M电解液中C/10的倍率,硫正极可表现出1265mAh.g-1的比容量、第二个放电平台电压约为2.1V(电压迟滞~0.15V)。但当倍率增加到2C时,放电容量降为650mAh.g-1(为初始容量的50%),放电平台降为1.8V(电压迟滞~0.65V),说明存在溶解/穿梭效应从而导致锂硫电池中倍率性能受限。电解液浓度增加时,高倍率下容量***降低,电压滞后明显增加。高浓度电解液1C-2C倍率下,几乎无法区分出两个放电平台,说明高浓度电解液中反应动力学较差。当电解液浓度为1M和2M时,200次循环后均出现明显的容量衰减(~65%),即第200圈充放电*能释放~600mAhg-1的容量。在0.1M的电解液中,电池表现出了优异的电化学性质,循环200个周期后的容量保持率为~95%,说明稀释电解液后的锂硫电池中多硫化物穿梭、负极表面不可逆的Li2S沉积和电阻的增长均变小。双三氟甲烷磺酰亚胺锂是否能与水反应生成硫化氢。
PDES-CPE的制备过程示意图。将四种固体粉末:丁二腈(SN)、双三氟甲烷磺酰亚胺锂(LiTFSI)、二氟草酸硼酸锂(LiDFOB)和一种合成的单体甲基丙烯酸(2-(((2-氧代-1,3-二氧戊烷基-4-基)甲氧基)甲酰胺基))-乙酯(CUMA)均匀混合得到熔融的前驱体,加入具有正极、负极、隔膜的电池中,在60 ℃充分聚合得到含有PDES-CPE的电池。通过截面扫描电镜图和能谱图看出,正极和电解质呈现出紧密的接触,原位聚合的电解质可以均匀渗透到工业水平的正极(70 μm,26 mg/cm2)中,有益于界面阻抗的降低和界面的离子传输。根据PDES-CPE聚合前后的1H核磁共振谱,通过聚合后的单体和残余单体所对应的峰的积分面积计算,得出PDES-CPE的聚合转化率高达99.8 %(图1c)。CUMA中的甲基丙烯酸酯结构在聚合时具有快速的链增长动力学性能,且其聚合物自由基中间体与SN或锂盐之间的链转移反应较少;另外,CUMA较短的链长使得其在链增长过程中反应活化能较低,决定了PDES-CPE的高聚合转化率。多氟芳香环与双三氟甲烷磺酰亚胺锂进行混合形成呈近晶相的液晶电解质。青海装配式双三氟甲烷磺酰亚胺锂
白色粉末。熔点234-238 °C(lit.),密度1,334 g/cm3,溶解度 H2O: 10 mg/mL, clear, colorless。应用双三氟甲烷磺酰亚胺锂氯化锂干燥
酯类和醚类是电池中**常用的两类有机电解液溶剂,而常用的盐有六氟磷酸盐,高氯酸盐,三氟甲基磺酸盐,双三氟甲烷磺酰亚胺盐等。在对硬碳的报道中,酯类电解液是**常用的,但醚类电解液可以实现更好的倍率性能和首效。电解液溶剂和盐的种类,以及电解液的浓度,可以影响SEI膜的组成,从而影响硬碳负极的循环性能。通过在电解液中加入少量的添加剂,可以***的提高硬碳负极的性能。比如,添加2-5%的氟代碳酸乙烯酯(FluoroethyleneCarbonate,FEC)可以在硬碳负极表面生成稳定的SEI膜,而加入碳酸亚乙烯酯(VinyleneCarbonate,VC)则可以提高SEI膜的热稳定性,从而提高电池的高温性能。也有一些基于磷酸三甲酯(trimethylphosphate,TMP)的不可燃电解液,可以提高电池的安全性,因而也非常值得关注。应用双三氟甲烷磺酰亚胺锂氯化锂干燥
上海域伦实业有限公司主要经营范围是化工,拥有一支专业技术团队和良好的市场口碑。公司自成立以来,以质量为发展,让匠心弥散在每个细节,公司旗下碳酸锂,氢氧化锂,硫酸锂,氟化锂深受客户的喜爱。公司秉持诚信为本的经营理念,在化工深耕多年,以技术为先导,以自主产品为重点,发挥人才优势,打造化工良好品牌。域伦凭借创新的产品、专业的服务、众多的成功案例积累起来的声誉和口碑,让企业发展再上新高。