膦酸酯中作为电解液阻燃溶剂(共溶剂)应用**多的是DMMP。XIANG等发现DMMP基阻燃电解液与Li4Ti5O12负极材料兼容性良好,该阻燃电解液被成功用于高能量密度高电压LiNi0.5Mn1.5O4/Li4Ti5O12全电池体系中。ZENG等以DMMP为主溶剂开发出适用于LiFePO4/SiO全电池体系的阻燃型电解液。WU等将双三氟甲烷磺酰亚胺锂(LiTFSI)作为主盐溶解于一种新型磷酸酯主溶剂中,二甲基(2-甲氧基乙氧基)甲基磷酸酯[dimethyl(2-methoxyethoxy) methylphosphonate,DMMEMP],该阻燃型电解液与金属锂片兼容性良好,适用于LiFePO4/Li电池体系。磷腈类化合物作为阻燃电解液溶剂(共溶剂)的报道较少,ROLLINS等报道了一种氟代六烷氧基环三磷腈[FM-2]共溶剂,能够提高电化学稳定窗口、热稳定性和安全性能高,利于稳定SEI膜,该阻燃电解液被成功应用于石墨/(锰酸锂+三元材料)全电池体系中,当使用量为20%时,可以明显改善全电池的循环性能。双三氟甲烷磺酰亚胺锂合成方法。智能化双三氟甲烷磺酰亚胺锂特价
目前商用锂离子电池通常围绕有机电解液构建,但是由于有机体系本征的高挥发性、易燃等特性使得其存在高加工成本、低安全、非环境友好等问题。近年来,水系电池采用更温和的水作为溶剂**增加了电池器件加工便利性,安全性,然而受限于水的低电化学窗口(1.23V),水系锂电能量密度不足以与目前有机体系抗衡, 2015年 “water in salt”概念指出通过高盐浓度可以大幅度提升水系电解液的电化学窗口,从而实现了更高能量密度的水系锂离子电池器件。“water in salt”电解质指的是浓度为 21 M(mol/kg)的 LiTFSI (双三氟甲烷磺酰亚胺锂) 水溶液,即溶质 LiTFSI 和溶剂水的质量比/体积比都远大于1,从而得名 water-in-salt(盐包水)。“water in salt”电解液除了带给水系电池更好的电化学性能之外,其背后还存在一系列不同于有机体系的界面化学或离子传导机制,这些特殊性质值得进一步挖掘。尤其是在高粘度下其还能保持如此高的电导率,溶剂水对离子传输的促进作用尚未明确。西藏标准双三氟甲烷磺酰亚胺锂硅烷基咪唑双三氟甲烷磺酰亚胺离子液体气相色谱固定相的性能评价。
Borgel等研究了镍锰酸锂半电池(Li/LiNi0.5Mn1.5O4)在TFSI(双三氟甲烷磺酰亚胺)基离子液体中的性能,相比于常规电解液,电池不可逆容量**降低。但将这些离子液体应用在高倍率和低温环境时,其性能还需要进一步的优化。1mol/LLiNTf2-C4mpyrNTf2(双三氟甲烷磺酰亚胺锂/1-丁基-1-甲基吡咯烷鎓双三氟甲磺酰亚胺)电解液用于Li/LiNi0.5Mn1.5O4电池,与电解液[1mol/LLiPF6j(EC)∶j(DEC)=1∶2]相比,电池放电容量相当,但库仑效率有明显的提高,且离子液体的阻燃性、安全性较优。不足的地方是使用该离子液体后电池库仑效率*约95%,容量衰减较快,因此库仑效率还需提高,真正实现高效率、高容量保持率。为改善其不足,可将离子液体与常规溶剂作为共溶剂,提升锂离子电池在高电压下的性能。虽然离子液体可应用在高电压锂离子电池,但是其高的黏度、低的电导率导致电池循环和倍率性能降低;其次,其浸润性不好,致使与电极的相容性也较差;再者,离子液体熔点高,使得在低温下的性能下降。离子液体真正实现应用化还需更多的研究。
LiTFSI作为新型非水性锂盐,具有高的热稳定性,阴阳离子的缔合度小,在碳酸酯体系具有高的溶解度和解离度。在低温情况下,LiFSI体系电解液较高的电导率和较低的电荷转移阻抗保证了其低温性能。Mandal等人采用LiTFSI作为锂盐,EC/DMC/EMC/pC(质量比15:37:38:10)为基础溶剂,所得电解液在-40°C下仍具有2mScm-1的高电导率。因而,LiTFSI被视为是**有前途的,能够取代六氟磷酸锂的电解质,也被视为是过渡到固态电解质时代的选择之一。根据维基百科的观点,LiTFSI双(三氟甲磺酰基)酰亚氨锂又称双(三氟甲烷磺酰)亚胺锂,是一种弱配位阴离子的锂盐,化学式为LiC2F5NO5S2,可用作复合聚合物的亲水性电解质材料。该化合物可由双(三氟甲基磺酰)亚胺和氢氧化锂或碳酸锂在水溶液中反应得到,无水物通过110°C真空干燥获得:LiOH+HNTf2→LiNTf2+H2O双三氟甲烷磺酰亚胺锂产品规格、参数。
研究了双三氟甲烷磺酰亚胺阴离子Tf2N分别与5种不同阳离子组成的离子液体对产紫青霉菌(PenicilliumpurpurogenumLi-3)的生长、代谢、细胞膜透性及全细胞催化活性的影响结果表明,[N1,4.4,4]Tf2N对产紫青霉菌的生长有促进作用,[Py14]Tf2N,[Bmim]Tf2N,[BPy]Tf2N和[P6.4.4,4]Tf2N4种离子液体对产紫青霉菌的生长则均有不同程度的抑制。代谢活力保留值R的测定结果表明,[P6.4.4,4]Tf2N和[N14.4.4JTf2N对产紫青霉菌体细胞表现出相对较高的生物相容性;5种离子液体对菌体细胞的细胞膜透性均有改善作用。全细胞催化反应数据显示比较好离子液体为[Py14]Tf2N,当其加入量为25%,反应84h后,单葡萄糖醛酸基甘草次酸(GAMG)产率高达95.38%。5种离子液体对产紫青霉菌的生长、代谢、细胞膜透性及全细胞催化活性的影响不仅与阴离子Tf2N有关阳离子的组成、结构和性质也发挥重要的作用。双三氟甲烷磺酰亚胺锂(LiTFSI)作为主盐溶解于一种新型磷酸酯主溶剂。江西双三氟甲烷磺酰亚胺锂走势
双三氟甲基磺酰亚胺锂具有高的离子电导率和宽的电化学窗口。智能化双三氟甲烷磺酰亚胺锂特价
PDES-CPE的制备过程示意图。将四种固体粉末:丁二腈(SN)、双三氟甲烷磺酰亚胺锂(LiTFSI)、二氟草酸硼酸锂(LiDFOB)和一种合成的单体甲基丙烯酸(2-(((2-氧代-1,3-二氧戊烷基-4-基)甲氧基)甲酰胺基))-乙酯(CUMA)均匀混合得到熔融的前驱体,加入具有正极、负极、隔膜的电池中,在60 ℃充分聚合得到含有PDES-CPE的电池。通过截面扫描电镜图和能谱图看出,正极和电解质呈现出紧密的接触,原位聚合的电解质可以均匀渗透到工业水平的正极(70 μm,26 mg/cm2)中,有益于界面阻抗的降低和界面的离子传输。根据PDES-CPE聚合前后的1H核磁共振谱,通过聚合后的单体和残余单体所对应的峰的积分面积计算,得出PDES-CPE的聚合转化率高达99.8 %(图1c)。CUMA中的甲基丙烯酸酯结构在聚合时具有快速的链增长动力学性能,且其聚合物自由基中间体与SN或锂盐之间的链转移反应较少;另外,CUMA较短的链长使得其在链增长过程中反应活化能较低,决定了PDES-CPE的高聚合转化率。智能化双三氟甲烷磺酰亚胺锂特价