双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

Borgel等研究了镍锰酸锂半电池(Li/LiNi0.5Mn1.5O4)在TFSI(双三氟甲烷磺酰亚胺)基离子液体中的性能,相比于常规电解液,电池不可逆容量**降低。但将这些离子液体应用在高倍率和低温环境时,其性能还需要进一步的优化。1mol/LLiNTf2-C4mpyrNTf2(双三氟甲烷磺酰亚胺锂/1-丁基-1-甲基吡咯烷鎓双三氟甲磺酰亚胺)电解液用于Li/LiNi0.5Mn1.5O4电池,与电解液[1mol/LLiPF6j(EC)∶j(DEC)=1∶2]相比,电池放电容量相当,但库仑效率有明显的提高,且离子液体的阻燃性、安全性较优。不足的地方是使用该离子液体后电池库仑效率*约95%,容量衰减较快,因此库仑效率还需提高,真正实现高效率、高容量保持率。为改善其不足,可将离子液体与常规溶剂作为共溶剂,提升锂离子电池在高电压下的性能。虽然离子液体可应用在高电压锂离子电池,但是其高的黏度、低的电导率导致电池循环和倍率性能降低;其次,其浸润性不好,致使与电极的相容性也较差;再者,离子液体熔点高,使得在低温下的性能下降。离子液体真正实现应用化还需更多的研究。双三氟甲烷磺酰亚胺锂产品介绍。智能化双三氟甲烷磺酰亚胺锂材料

采用***性原理计算(DFT)与实验相结合的方法,比较研究了双三氟甲烷磺酰亚胺锂-二草酸硼酸锂(LiTFSI-LiBOB)、双三氟甲烷磺酰亚胺-二氟草酸硼酸锂(LiTFSI-LiDFOB)、双氟磺酰亚胺锂-二草酸硼酸锂(LiFSI-LiBOB)、双氟磺酰亚胺锂-二氟草酸硼酸锂(LiFSI-LiDFOB)四种酰亚胺-硼酸盐双盐电解质体系对抑制锂枝晶生长、提升锂金属库仑效率的作用效果。研究结果表明,LiTFSI-LiBOB双盐电解质体系能够发挥比较好的效果。该研究成果以“Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries”为题发表在ACS Appl. Mater. Inter. 2018, 10, 2469-2479(Xing Li, Jianming Zheng (共同一作), Mark H. Engelhard, Donghai Mei, Qiuyan Li, Shuhong Jiao, Ning Liu,  Wengao Zhao, Ji-Guang Zhang(通讯作者), Wu Xu(通讯作者))。此外,为了更准确的测定锂金属负极的库仑效率,还系统研究了隔膜的影响,研究结果表明聚乙烯(PE)膜是相对**稳定的隔膜体系。浙江节能双三氟甲烷磺酰亚胺锂咪唑类离子液体和双三氟甲烷磺酰亚胺锂的**溶液经溶剂挥发和热压的方法制备而成柔性固态凝胶电解质。

电解液是锂电池四大关键材料之一,号称锂电池的“血液”,是锂电池获得高电压、高比能等优点的保证,锂电池电解液是由六氟磷酸锂加上有机溶剂配成,六氟磷酸锂是电解液****的原材料,主要用于笔记本电脑、移动电话、消费电子产品和电动汽车等电子产品的锂离子充电电池的主要原材料。其生产成本为10万元/吨,当前售价超过30万元/吨。随着新能源车的发展,对电解液需求拉动将增大,未来3-5年电解液行业需求较为旺盛,故此未来市场在这一块的前景很乐观。

崔屹团队***报道防火、超轻聚合物-聚合物固态电解质(SSE)。该聚合物固态电解质以多孔聚酰亚胺作为机械增强框架材料,添加阻燃剂(十溴二苯乙烷,DBDPE)和离子导电聚合物电解质(聚环氧乙烷/双三氟甲烷磺酰基锂)。聚合物固态电解质由有机材料制成,具有可调节的膜厚度(10–25μm),与传统的隔膜/液体电解质相比,具有更高的能量密度。PI / DBDPE膜具有热稳定性、不可燃性和高机械强度,能够保证Li-Li对称电池稳定循环300小时不发生短路。制成的LiFePO4/ Li半电池在60°C 下表现出高速率性能(在1 C下为131 mAh g–1)和循环性能(在C/2速率下,300个循环)。值得一提的是,即使在火焰下测试,该聚合物固态电解质制成的软包电池仍能正常工作。双三氟甲烷磺酰亚胺锂的包装方法。

电化学分析以其灵敏度高和便捷准确而成为分析检测领域的研究热点之一。本论文制备了还原氧化石墨烯修饰的玻碳电极、平面参比电极和纳米普鲁士蓝、氧化石墨烯及双三氟甲烷磺酰亚胺锂修饰的丝网印刷电极。采用交流阻抗法及微分脉冲伏安法对不同氧化程度的植物油进行了测量并与国标比色法进行对比,结果表明所建立的电化学方法能够方便准确地对植物油的氧化程度进行检测。主要研究内容及结果如下:1、还原氧化石墨烯修饰玻碳电极的制备及其在水相介质中测量植物油氧化诱导时间制备了氧化石墨烯及rGO/GCE,并研究了rGO膜层厚度对电极性能的影响。结果表明,循环伏安扫描50圈得到的rGO/GCE性能比较好。接着建立了植物油氧化诱导时间的水相介质测量体系包含油水混合系统、油水分离系统和测量系统。并对水相介质、油水体积比、油水混合程度对测量的影响进行了研究。结果表明,在油水体积比为1:1、铜丝长度为40cm及pH为7.0的磷酸缓冲液的水相介质中测量灵敏度较高。双三氟甲烷磺酰亚胺锂产品规格、参数。中国澳门环保双三氟甲烷磺酰亚胺锂

采用双三氟甲烷磺酰亚胺锂(LiTFSI)离子传输效率更高,其交换电流密度大幅提升。智能化双三氟甲烷磺酰亚胺锂材料

目前商业上**成功的锂盐是LiPF6,因为它均衡了各项性能,如良好的解离度、溶解性、离子电导率以及能够钝化铝箔等。但它在痕量水存在的情况下会与水反应生成HF侵蚀正极,此外它在80 ℃即发生分解。LiPF6较差的化学稳定性和热稳定性限制了其在高电压三元锂离子电池中的应用,故对于新的替代锂盐的寻找从未停止。其中被深入研究的有双草酸硼酸锂(LiBOB),二氟草酸硼酸锂(LiDFOB),双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)等。但在实际应用中,除了成本限制,这些锂盐都有各自的局限性,如LiBOB和LiDFOB较差的溶解性,LiFSI和LiTFSI较差的纯度和在高压下(4.0 V,vs. Li+/Li)对铝箔严重腐蚀等等,所以一般作为添加剂(第4部分介绍)或将几种盐混合使用。智能化双三氟甲烷磺酰亚胺锂材料

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责