出于安全性考虑,正极材料需要与电解液的相容性和稳定性好。常见的正极材料在温度低于650℃时是相对比较稳定的,充电时处于亚稳定状态。在过充的情况下,正极的分解反应及其与电解液的反应放出大量热量,造成。钴酸锂、镍酸锂的热稳定都比较差,镍钴锰酸锂三元材料由于其比容量高、具有较高的比能量密度,成为当下正极材料的理想之选。然而三元材料中镍的含量较高,材料的循环性能难以保证,热稳定性较差。富镍正极材料在高电压(>)和高温(>50℃)下循环过程中发生结构坍塌导致二次颗粒连续产生微裂缝。这些微裂缝断开一次颗粒之间的电通路,在相转变过程中释放氧气,导致电化学性能变差。JaephilCho教授课题组[1]通过对一次颗粒进行纳米表面修饰来克服富镍正极材料的上述问题,经过处理的一次颗粒表面复含钴,通过***从分层结构到岩石盐结构的变化来缓解微裂纹产生。而且,表面高氧化态的Mn4+在高温下能够降低氧气的释放,改善结构稳定性与热稳定性。SangKyuKwark等人[2]提出一种提高锂电池正极稳定性的方法,先采用经典的煅烧方法制备出NCA材料,然后将NCA浸入到醋酸锂和醋酸钴的混合溶液中,进一步搅拌、蒸干、煅烧得到改进的正极材料。 用醋酸锂法转化巴氏毕赤酵母表达人**蛋白聚糖。湖南装配式无水醋酸锂
将钛酸四丁酯前驱体加入N,N-二甲基甲酰胺(或乙醇)醋酸和醋酸锂的混合溶液中采用溶剂热法直接制备了大长径比的二氧化钛纳米结构。利用透射电子显微镜、选区电子衍射和X射线衍射等技术对二氧化钛纳米结构的形貌、尺寸、形状和晶体形态进行了表征并探讨了改变反应混合物溶剂对所生成的二氧化钛微观结构的影响。结果表明:用溶剂热法可以直接获得长径比可调的二氧化钛纳米结构;将N,N-二甲基甲酰胺替换为乙醇二氧化钛纳米结构由长径比可达100的纳米线变成长径比小于20的纳米棒;无论溶剂选用N,N-二甲基甲酰胺或选用乙醇,当反应温度由180°C提高到200°C后,所获的二氧化钛纳米结构的晶体形态由锐钛矿型转变为锐钛矿型与金红石型混合相。山西生意社无水醋酸锂醋酸锂对毕赤酵母进行前期处理并不能有效提高外源基因在其中的转化效率。
镍钴锰三元正极材料的制备工艺与材料的结构、形貌和电化学性能有很大的关系,学者们研究出了多种合成方法,DENG等以NaOH为沉淀剂、氨水为络合剂在0°C下搅拌9h得到前驱体,然后与LiOH混合焙烧得到LiNi1/3Co1/3Mn1/302材料,其***放电容量可达到172mA-h/g。YANG等用碳酸盐共沉淀法制备了层状111三元材料,并探讨了4种不同锂源对材料的物理和电化学性能的影响。TAN等使MnO2纳米棒为原料,与NiO、Co203、Li2CO3混合研磨,在900°C下焙烧得到大倍率充放电性能优异的LiNi1/3Co1/3Mn1/302正极材料。GANGULIBABU等采用玉米粉为凝胶剂和助燃剂通过溶胶-凝胶法制备。LiNi1/3Co1/3Mn1/3O2电极材料。GAO等首先以镍钴锰的乙酸盐为原料、柠檬酸为螯合剂,在乙醇溶液中制成凝胶烘干得到前驱体,然后将前驱体与锂源在900°C下焙烧24h得到性能优异的LiNi1/3Co1/3Mn1/3O2电极材料。SHUI等将乙酸锂和镍钴锰的乙酸盐溶于去离子水中,然后进行喷雾干燥,850°C焙烧后得到三元材料,在2.0~4.5V内,电流密度为0.1C时其***放电容量为159.3mA.h/g。
提高锂离子电池的安全性、避免热失控的发生不仅需要从电池材料上做出改变,还需要结合电池配方设计、结构设计和电池组的热管理设计上多管齐下。当前引发锂电池热失控的因素多种多样,总结起来主要有过热、过充、内短路、碰撞等引起的发热失控。如何提高电池的安全性,把热失控的风险降至比较低成为人们研究的重中之重。对于单电池来说,其安全性除了与正极材料相关外,还与负极、隔膜、电解液、粘结剂等其他电池组成部分有着很大关系。下面展开讲述研究者们是如何在电池材料上降低电池热失控风险,提高锂电池安全性。
醋酸锂:醋酸乙烯与活性聚丁二烯基锂反应机理的探讨。
合成方法
LTO一次纳米颗粒的合成:将4.59 g (45 mM)乙酸锂溶于200mL 1,4-丁二醇中,室温下搅拌至完全溶解。然后,将17.02 g (50 mM) 钛酸四丁酯逐滴加入到上述溶液中,历时约1小时直至溶液变为微黄色。紧接着,将该溶液转移到700mL的高压反应釜中,另外将60mL钛酸四丁酯加入到高压反应釜和烧杯之间的缝隙中以确保热接触。随后,反应釜密封后加热到300℃反应2h,升温速率为3℃/min;高压反应釜中的溶液同时以300r.p.m.的速率搅拌。反应完成后,反应釜自然降温,可得到乳白色的胶体溶液。***,用乙醇离心洗涤3次(转速6000r.p.m.;时长10min)然后在真空干燥箱箱中50℃放置3h后可得到产物-白色粉体LTO。 醋酸锂用于饱和与不饱和脂肪酸的分离,有机反应催化剂。标准无水醋酸锂的制备
无水醋酸锂的生产流程。湖南装配式无水醋酸锂
Prof. Yingjie Zhu和Xianluo Hu合作[3],采用羟基磷灰石超长纳米线、科琴黑纳米颗粒,碳纤维和磷酸铁锂粉末作为原料,通过简单的静电辅助自组装的方法成功的制备了一种既可以耐高温、又具有活性物质高负载量的新型磷酸铁锂复合电极(UCFR-LFP),可以作为锂电池正极(图1)。在自组装和抽滤的过程中,磷酸铁锂纳米颗粒均匀得分散在高导电性且多孔的羟基磷灰石超长纳米线/科琴黑纳米颗粒/碳纤维基底中,从而形成自支撑、具有独特复合多孔结构的磷酸铁锂耐高温正极材料,其具有优异的热稳定性和耐火性,即使在1000℃的高温下也能保持其电化学活性和结构完整性。湖南装配式无水醋酸锂