一种高电压水系电解液锂离子电容器的制备方法,首先量取一定浓度的纳米二氧化钛溶胶,在搅拌中按比例加入一定浓度的氧化石墨烯溶胶,对其混合物进行超声处理,喷雾干燥和热处理后得到二氧化钛/还原氧化石墨烯纳米复合材料;分别以所得到的二氧化钛/还原氧化石墨烯纳米复合材料和活性炭为活性物质制作正负极极片;然后采用双三氟甲烷黄酰亚胺锂和三氟甲磺酸锂溶液制备得到混合双盐浓溶液电解液,并用双三氟甲烷黄酰亚胺溶液调节该电解液的PH值;将所得到的正负极极片和电解液组装成锂离子电容器。该方法制备的锂离子电容器具有较高的功率密度和能量密度,提高了锂离子电容器的性能。CF3SO3Li (三氟甲磺酸锂)在热稳定性、吸水分解性、 循环性能等方面都高于LiPF6。电池三氟甲基磺酸锂材料
商业锂离子电池内部组分为易燃材料,带电电极材料储存较高的能量,特别是低闪点的有机碳酸酯液态电解质的高度易燃及泄漏问题是造成锂离子电池火灾安全事故的重要因素。因此开发本质安全型的固态化电解质是降低其火灾安全隐患的根本手段之一。本文针对商业化液态电解质易燃,易泄漏的问题,开展了安全型二氧化硅基离子凝胶准固态,钠超离子导体型(NASICON)无机固态,无机-有机聚合物复合型固态电解质的合成,电化学及安全性能的相关研究,电解质的安全性明显提高并**终获得了性能良好的全固态电池。首先,开展了二氧化硅基离子凝胶准固态电解质相关研。使用硅酸四乙酯(TEOS)作为硅源,盐酸作为催化剂,1-丁基-3-甲基咪唑四氟硼酸盐([BMIm][BF4])作为离子液体,三氟甲磺酸锂(LiOTf)或双三氟甲烷磺酰亚胺锂(LiTFSI)作为锂盐,通过快速溶胶凝胶法制备了两种二氧化硅基离子凝胶准固态电解质。该类电解质以二氧化硅为基质骨架,内部保留部分离子液体,热稳定性好且完全不燃。有机三氟甲基磺酸锂报价表新型透明高个电常数聚丙烯腈.三氟甲基磺酸锂/环氧树脂复合材料。
锂空气电池是新型绿色能源技术,由于电池阴极来源于空气中的氧气,不需要存储于电池中,因而被誉为"会呼吸的电池"。该体系在能量密度方面有杰出的表现,已成为相当有潜力的发展方向之一。目前,该方向的研究着重于提升电池比容量,二次电池的开发以及电池的放电机理三个方面。虽然一次电池的开发中电池比容量有了大幅提升,但仍有上升的空间。不同的电解质体系,电池的充放电机理存在相应的差异,电池的放电过程也发生着相应的改变,所以目前仍无一个公认的电池充放电机理。通过遴选电解质配方,电极组分,隔膜,空气过滤膜,配合相应的空气电池结构设计,开发了一种高比容量的锂空气电池。在工艺研究的基础上,通过对放电产物的检测,电池放电过程电极形貌变化情况与电化学阻抗谱的观察,讨论了该电池体系在空气中的放电机理。通过对电池结构的设计,电解质组分和电池结构性材料的遴选以及空气电极的结构设计,确定如下工艺条件:电解质为三氟甲磺酸锂(LiOTf ,溶剂为碳酸丙烯脂(PC)与碳酸乙烯酯(EC)等体积比混合物(VPC/VEC=1),电池隔膜为玻璃纤维滤纸膜,空气过滤膜为聚二甲基硅氧烷硅油(PDMS)膜。
三氛甲基磺酸锂是**早工业化的有机锂盐之一。作为LiPF6可能的替代品,LiCF3SO3与LiPF6的电化学性能相近,具有高的抗氧化能力和热稳定性,LiCF3SO3的各种电解液(特别是以EC作为溶剂)有高的库仑效率(约98%)和良好的放电能力,LiCF3SO3明显的不足在于构成的电解液的电导率小,如在25℃时10mol/LLiCF3SO3/PC溶液中的电导率只有1.7X10-3S/cm,远低于Li+浓度下LiPF6/PC电导率,这主要是由于LiCF3SO3在有机溶剂中容易缔合形成离子对,减少了传输电荷的粒子的数目。拉曼光谱研究表明,当LiCF3SO3溶液的浓度大于0.5mol/L时,溶液中可能形成直接接触离子对、离子对的二聚体等缔合物。LiCF3SO3的另一个缺点是在电解液中腐蚀电极集流体金属铝。由于LiCF3SO3与铝的特殊作用,铝在电压约为2.7V时候就开始溶解,在约3.0V时凹陷。在正常充电电压约4.0V(对Li/Li+)时,阳极腐蚀电流密度约为20mA/cm2,铝表面的钝化基本被破坏,因此,这类盐不能用于以铝作集流体的锂离子电池。对LiCF3SO3的阴离子进行简单的化学修饰可以设计出新的磺酸锂盐。如将阴离子中的氧原子用不同数目的CF3或CF3C官能团取代,或用长链氛代烷烃取代CF3均可以形成以硫为中心的新型阴离子,制备出的锂盐电导率较大。三氟甲基磺酸锂的密度:1.9。
高介电常数(High-k)聚合物基复合材料(PMCs)在可卷曲触摸屏、机器人传感器和电子皮肤等领域具有巨大的应用前景。要求材料不仅具有High-k,而且应该兼具高透明性、柔韧、**度、高击穿强度和低介电损耗等多功能。但目前研发一种兼具多功能的高介电常数复合材料仍然是一个具有重大意义的挑战。本文围绕这一挑战展开了研究,主要内容分为以下两个方面。首先,以环氧树脂(EP)为基体,以聚丙烯腈(PAN)-三氟甲基磺酸锂(LiTf)杂化体为导体,制得了一种新型多功能复合膜。深入研究了复合膜的组成对复合材料结构与性能的影响。研究结果表明,与前人所报道的High-k材料相比,EP/(PAN-LiTf)复合膜的比较大特色是在具有High-k的同时,兼具透明、高柔性、**度和高击穿强度。当EP含量为22wt%时,所制得的0.22EP/(PAN-LiTf)复合膜在600-800nm波长范围内平均透过率在91%,断裂伸长率约为12.7%;与此同时,介电常数、交流击穿强度和比较大储能密度分别达到22.1(100Hz)、41.9kV/mm和0.172J cm~(-3),是EP树脂值的4.9倍、1.8倍和15.2倍,克服了传统导体加入聚合物后,导致相应复合材料的击穿强度***降于聚合物的弊端。深入探讨了EP/(PAN-LiTf)复合材料优异综合性能的本质。三氟甲磺酸的制备方法。有机三氟甲基磺酸锂报价表
稳定的阴离子会使电解质和阴极材料界面间的钝化层结构和组成得到改善,有利 于电解质、钝化膜和电机的稳定。电池三氟甲基磺酸锂材料
采用六氯环三磷腈高温开环聚合方法制备聚二氯磷腈,然后采用醇钠法制备聚二(二乙二醇单甲醚)磷腈(MEEP),获得了较佳的合成工艺,采用FT-IR、31P-NMR、13C-NMR质谱对其进行结构表征和分析。采用自制的MEEP与三氟甲基磺酸锂(LiCF_3SO_3)盐进行复配,制备了新型锂离子电池用聚合物固体电解质,对其热稳定性、导电性进行了测试。结果表明,其开始分解温度在200℃以上,室温电导率达到了1.187×10~(-4)S/cm(25℃),具有较佳的导电性和热稳定性。电池三氟甲基磺酸锂材料