LiTFSI(双三氟甲烷磺酰亚酰胺锂)锂盐热稳定性优异,但通常会腐蚀铝箔。为解决这一问题,Matsumoto等将LiTFSI锂盐浓度提高,配制了1.8mol/LLiTFSIm(EC)∶m(DEC)=3:7电解液,使用铝工作电极时其电化学窗口达到了4.5V。通过分析得到由于在高浓度电解液中,铝箔表面形成一层氟化锂LiF钝化层,成功抑制了铝箔的腐蚀。Wang等研究了高浓度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)电解液体系,其可形成三维网络状结构,从而在5V电压条件下有效阻止过渡金属和铝的溶解,高电压石墨C/LiNi0.5Mn1.5O4电池具有优异的循环性能。在10mol/LLiFSI-DMC高浓度电解液中,由于其可形成含氟量较高的界面保护层,在充电电压达到4.6V时,经过100次循环后,Li/NMC622电池保持了86%的初始放电容量。高浓度电解液具有高的抗氧化还原性,高载流子密度,可抑制铝箔腐蚀,热稳定性好等优点,具有应用于高电压电解液的潜力。然而其也存在不足,如电导率较低、成本较高等,如何提高电导率,降低成本,是推动高浓度电解液实用化进程的关键。发展氯磺酰异氰酸酯锂电池电解液新材料,推进双三氟甲烷磺酰亚胺锂国产化,提升国际竞争力。中国台湾双三氟甲烷磺酰亚胺锂产量
利用简单的溶剂挥发法将聚环氧乙烷(PEO)/双三氟甲烷磺酰亚胺锂(LiTFSI)聚合物电解质填充至聚乙烯隔膜的孔道内,制备了厚度*为7.5μm的超薄复合聚合物电解质。作者采用价廉易得、高力学性能、高孔隙率的电池隔膜作为支撑体,保证了超薄固态电解质的力学强度、防止全固态电池在组装、使用过程中发生内短路。采用该超薄电解质可***减小全固态电池的欧姆阻抗、极化现象,大幅提高全固态电池的电化学性能和能量密度。结果表明,采用该超薄固态电解质的全固态电池能够表现出优异的循环稳定性,LiFeO4电池在60oC可以10C速率快充,在30oC下的比容量可达135 mAh g-1。该固态电解质与高比能正极材料(如硫)或负极材料(如MoS2)组装成全固态锂金属电池可稳定循环。该研究工作制备的简单、高效且可量产的聚合物电解质有望推动锂金属电池的商业化进程。安徽双三氟甲烷磺酰亚胺锂行情双三氟甲烷磺酰亚胺锂合成方法。
锂金属电池是下一代相当有前景的高能量密度存储设备之一。然而,锂金属在循环过程中产生的枝晶可刺破隔膜,引起电池短路甚至。采用固态电解质代替易燃的液态电解质可从根本上解除锂金属电池的安全隐患。其中,聚合物固态电解质具有良好的柔性、优异的加工性和电解质-电极界面相容性。然而,聚合物电解质室温电导较低、机械强度较弱,限制了其广泛应用。目前,对聚合物电解质的研究多聚焦在提高其离子电导率。离子电导率由固态电解质的离子电导对电解质厚度和面积进行标准化处理计算得到。不同固态电解质的厚度相差较大,因此,即使电导率相近,厚度的差异导致了锂离子在固态电解质中迁移距离的不同,直接影响了全固态电池电化学性能和能量密度。近期,华中科技大学李真教授和黄云辉教授研究团队报道了一种可规模化制备的超薄柔性聚合物电解质。他们利用简单的溶剂挥发法将聚环氧乙烷(PEO)/双三氟甲烷磺酰亚胺锂(LiTFSI)聚合物电解质填充至聚乙烯隔膜的孔道内,制备了厚度*为μm的超薄复合聚合物电解质。作者采用价廉易得、高力学性能、高孔隙率的电池隔膜作为支撑体,保证了超薄固态电解质的力学强度、防止全固态电池在组装、使用过程中发生内短路。
一是推动医药企业智能化发展。引导企业创新发展理念,打造智能制造+绿色制造+共享平台”新商业模式,构建“共享智能工厂“新生态。二是推动装备制造**化发展。发展黑土地保护性耕作、秸秆还田收贮、收割机、深松机、整地机等农业机械,以及设施农业、畜禽屠宰等农牧及加工机械,打造农机装备产业链,发展创新平台,研发**装备。三是推动化工新材料创新发展。发展氯磺酰氰酸酯锂电池电解液新材料,推进双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)国产化,提升国际竞争力。四是推动冶金建材业绿色化发展。重视绿色制造,推进产品全生命周期的绿色管理进程,推进金钢钢铁低碳非高炉炼铁改造,发展绿色低碳冶金建材产业。双三氟甲烷磺酰亚胺锂作为六氟磷酸锂的升级产品。
中科院物理研究所李泓和禹习谦研究员等人采用原位微分电化学质谱(DEMS)来研究LiCoO2|PEO-LiTFSI|Li电池中的产气行为。通过实验和理论计算表明,LiCoO2的表面催化作用是PEO在4.2 V意外析出H2气体的根本原因。使用稳定的固态电解质Li1.4Al0.4Ti1.6(PO4)3(LATP)对LiCoO2表面进行包覆可以减轻这种表面催化作用,并将电池工作电压扩展到4.5 V以上。同时还解释了产气的原因:双三氟甲烷磺酰亚胺(HTFSI)在正极侧因被氧化脱水而产生,并在负极极侧与金属锂反应导致了氢气的析出。相关研究成果以“Increasing Poly(ethyleneoxide) Stability to 4.5 V by Surface Coating of the Cathode”为题发表在ACS Energy Letters上。双三氟甲烷磺酰亚胺锂消费地区。发展双三氟甲烷磺酰亚胺锂
双三氟甲烷磺酰亚胺锂的贮存方法。中国台湾双三氟甲烷磺酰亚胺锂产量
Borgel等研究了镍锰酸锂半电池(Li/LiNi0.5Mn1.5O4)在TFSI(双三氟甲烷磺酰亚胺)基离子液体中的性能,相比于常规电解液,电池不可逆容量**降低。但将这些离子液体应用在高倍率和低温环境时,其性能还需要进一步的优化。1mol/LLiNTf2-C4mpyrNTf2(双三氟甲烷磺酰亚胺锂/1-丁基-1-甲基吡咯烷鎓双三氟甲磺酰亚胺)电解液用于Li/LiNi0.5Mn1.5O4电池,与电解液[1mol/LLiPF6j(EC)∶j(DEC)=1∶2]相比,电池放电容量相当,但库仑效率有明显的提高,且离子液体的阻燃性、安全性较优。不足的地方是使用该离子液体后电池库仑效率*约95%,容量衰减较快,因此库仑效率还需提高,真正实现高效率、高容量保持率。为改善其不足,可将离子液体与常规溶剂作为共溶剂,提升锂离子电池在高电压下的性能。虽然离子液体可应用在高电压锂离子电池,但是其高的黏度、低的电导率导致电池循环和倍率性能降低;其次,其浸润性不好,致使与电极的相容性也较差;再者,离子液体熔点高,使得在低温下的性能下降。离子液体真正实现应用化还需更多的研究。中国台湾双三氟甲烷磺酰亚胺锂产量