中科院物理研究所李泓和禹习谦研究员等人采用原位微分电化学质谱(DEMS)来研究LiCoO2|PEO-LiTFSI|Li电池中的产气行为。通过实验和理论计算表明,LiCoO2的表面催化作用是PEO在4.2 V意外析出H2气体的根本原因。使用稳定的固态电解质Li1.4Al0.4Ti1.6(PO4)3(LATP)对LiCoO2表面进行包覆可以减轻这种表面催化作用,并将电池工作电压扩展到4.5 V以上。同时还解释了产气的原因:双三氟甲烷磺酰亚胺(HTFSI)在正极侧因被氧化脱水而产生,并在负极极侧与金属锂反应导致了氢气的析出。相关研究成果以“Increasing Poly(ethyleneoxide) Stability to 4.5 V by Surface Coating of the Cathode”为题发表在ACS Energy Letters上。硅烷基咪唑双三氟甲烷磺酰亚胺离子液体气相色谱固定相的性能评价。新疆口碑好的双三氟甲烷磺酰亚胺锂
一般而言,电解液中有机溶剂和溶质容易分析并模仿,但添加剂成分通常很难分析出来。可以说,添加剂的成分是电解液企业的技术**所在。常见的添加剂分类包括SEI(改善石墨负极表面的固体电解质界面膜性能)成膜添加剂、抗过充添加剂、阻燃添加剂、稳定添加剂、浸润添加剂、除酸除水添加剂等等。常见的添加剂有双草酸硼酸锂(LiBOB)、二氟草酸锂(LiDFOB)、双三氟甲烷磺酰亚胺锂(LiTFSI)和双氟磺酰亚胺锂(LiFSI)等。以其中的LiFSi为例,目前全球范围内*有日本的触媒公司实现产业化生产,国内的氟特电池(新三板.上市公司)目前有小批量出货,因此相对于日韩企业来讲,目前国内电解液企业在添加剂方面处于相对落后的地位。河南有机双三氟甲烷磺酰亚胺锂双三氟甲烷磺酰亚胺锂锂电池电解液 :1.锂电池上 2.离子液体 3.抗静电 4.医药上(这个用途少)。
离子液体由阴、阳离子两部分组成, 阴离子通常有、、TFSI-、FSI-等,阳离子通常有吡咯类、咪唑类、哌啶类和季铵盐类等。离子液体具有挥发性极小、不燃、电化学稳定窗口宽、溶解能力强、热稳定性高等特点,既适合应用于高电压电解液,又适合制备阻燃型电解液,提高锂离子电池安全性。尽管如此, 由于纯离子液体黏度大,且与隔膜、电极材料的浸润性差,锂离子的迁移受到极大限制;另外,大多数的离子液体与碳基负极的兼容性差,因而,纯离子液体较难作 为电解液直接用于锂离子电池。实际上,离子液体通常与碳酸酯类、砜类或氟代醚类等溶剂混合使用来制备阻燃型高性能电解液。与碳酸酯混合使用配制阻燃型电解液的吡咯类离子液体有PYR14TFSI 或BMP-TFSI、N-丙基-N-甲基吡咯-二(三氟甲基磺酰)亚胺、N-乙基-2-甲氧基吡咯-双氟磺酰亚胺。KIM等报道与碳酸酯溶剂混合后电解液阻燃效果优异,且能保证LiFePO4/Li体系60 ℃高温的稳定运行。与碳酸酯混合的代表性哌啶类离子液体有N-甲基-N-丙基哌啶-二(三氟甲基磺酰)亚胺、1-乙基-1-甲基哌啶-二(三氟甲基磺酰)亚胺。
LiTFSI(双三氟甲烷磺酰亚酰胺锂)锂盐热稳定性优异,但通常会腐蚀铝箔。为解决这一问题,Matsumoto等将LiTFSI锂盐浓度提高,配制了1.8mol/LLiTFSIm(EC):m(DEC)=3:7电解液,使用铝工作电极时其电化学窗口达到了4.5V。通过分析得到由于在高浓度电解液中,铝箔表面形成一-层氟化锂LiF钝化层,成功抑制了铝箔的腐蚀。Wang等研究了高浓度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)电解液体系,其可形成三维网络状结构,从而在5V电压条件下有效阻止过渡金属和铝的溶解,高电压石墨C/LiNi0.5Mn1.5O4电池具有优异的循环性能。在10mol/LLiFSI-DMC高浓度电解液中,由于其可形成含氟量较高的界面保护层,在充电电压达到4.6V时,经过100次循环后,Li/NMC622电池保持了86%的初始放电容量。高浓度电解液具有高的抗氧化还原性,高载流子密度,可抑制铝箔腐蚀,热稳定性好等优点,具有应用于高电压电解液的潜力。然而其也存在不足,如电导率较低、成本较高等,如何提高电导率,降低成本,是推动高浓度电解液实用化进程的关键。双三氟甲烷磺酰亚胺锂产品证书。
采用***性原理计算(DFT)与实验相结合的方法,比较研究了双三氟甲烷磺酰亚胺锂-二草酸硼酸锂(LiTFSI-LiBOB)、双三氟甲烷磺酰亚胺-二氟草酸硼酸锂(LiTFSI-LiDFOB)、双氟磺酰亚胺锂-二草酸硼酸锂(LiFSI-LiBOB)、双氟磺酰亚胺锂-二氟草酸硼酸锂(LiFSI-LiDFOB)四种酰亚胺-硼酸盐双盐电解质体系对抑制锂枝晶生长、提升锂金属库仑效率的作用效果。研究结果表明,LiTFSI-LiBOB双盐电解质体系能够发挥比较好的效果。该研究成果以“Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries”为题发表在ACS Appl. Mater. Inter. 2018, 10, 2469-2479(Xing Li, Jianming Zheng (共同一作), Mark H. Engelhard, Donghai Mei, Qiuyan Li, Shuhong Jiao, Ning Liu, Wengao Zhao, Ji-Guang Zhang(通讯作者), Wu Xu(通讯作者))。此外,为了更准确的测定锂金属负极的库仑效率,还系统研究了隔膜的影响,研究结果表明聚乙烯(PE)膜是相对**稳定的隔膜体系。发展氯磺酰异氰酸酯锂电池电解液新材料,推进双三氟甲烷磺酰亚胺锂国产化,提升国际竞争力。吉林发展双三氟甲烷磺酰亚胺锂
双三氟甲烷磺酰亚胺锂是否能与水反应生成硫化氢。新疆口碑好的双三氟甲烷磺酰亚胺锂
以双三氟甲烷磺酰亚胺离子([NTf2]-)为阴离子,台成阳离子烷基取代不同(C1、C2和C4)的硅烷基咪唑离子液体,以其为固定相制备气相色谱填充柱。硅烷基咪唑离子液体为强极性固定相;阳离子结构影响固定相的热稳定性、极性和分离性能。在这些离子液体固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑双三氟甲烷磺酰亚胺([PBIM]NTf2)对Grob试剂分离性能较好。利用溶剂化作用参数模型,评价[PBIM]NTf2固定相特性,研究固定相-组分分子之间相互作用机制;同时考察[PBIM]NTf2色谱柱对不同类型化合物的分离性能。结果表明,[PBIM]NTf2固定相主要作用力是氢键碱性和偶极作用,对烷烃、醇、酯和胺等不同类型的样品组分表现出良好的分离能力。新疆口碑好的双三氟甲烷磺酰亚胺锂