双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

1994年,Dahn等报道了***个水系锂离子电池,该体系分别使用LiMn2O4和VO2作为正、负极,以5 mol/L LiNO3和0.001 mol/L LiOH作为电解液,在1.5 V的平均电压下循环100次后容量保持率达到80%。然而,水的电化学窗口较窄,限制了电极材料的选择范围,导致了传统水系锂离子电池的能量密度很低。为了进一步提高能量密度,2015年,王春生等报道了宽电位“water in salt”电解液,负极侧双三氟甲基磺酰亚胺(TFSI)的还原导致的钝化作用和正极侧Li+的溶剂化以及TFSI离子的作用,使电化学窗口扩大至3 V,如图5所示。使用该电解液组装了2.3 V的水系锂离子电池并循环了1000多次,无论在较低(0.15 C)、还是较高(4.5 C)倍率下放电和充电库仑效率均接近100%。在此研究基础上,该课题组又使用三(三甲基甲硅烷基)硼酸酯(TMSB)作为添加剂,通过TMSB的电化学氧化形成阴极电解质界面(CEI),使LiCoO2在更高的截止电压下稳定充电/放电,并具有170 mA·h/g的高容量。当与Mo6S8阳极配对时电压为2.5 V,能量密度达到120 W·h/kg(1000个循环),每循环0.013%的极低容量衰减率。随后,又有更宽电位的“water in bisalt”电解液被报道,拓宽了电极材料选择的范围。双三氟甲烷磺酰亚胺锂熔点: 234-238℃。湖南双三氟甲烷磺酰亚胺锂公司

将具备优良化学稳定性及高电导率的双三氟甲烷磺酰亚胺锂(LiTFSI)溶于1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐。(EMIM-TFSI)离子液体中制成LiTFSI-EMIM-TFSI电解液加入环氧乙烯基酯树脂(VER)中对其进行改性。结果表明,添加了上述电解液后的锂离子电解液/环氧,乙烯基酯树脂(LiTFSI-EMIM-TFSI/VER)体系可通过FTIR检测到离子液体的特征吸收峰。随着电解液含量的增加,LiTFSI-EMIIM-TFSI/VER体系的孔隙率逐渐增大,沟壑与片层结构逐渐增多。这一变化有利于锂离子的传导,提高体系的电学性能,同时可在一定程度上改善树脂的塑性和韧性提高LiTFSI-EMIM-TFSI/VER体系的力学性能。在本实验中,当电解液含量为40wt%时,LiTFSI-EMIM-TFSI/VER体系多功能性得以比较好地实现。中国台湾质量双三氟甲烷磺酰亚胺锂双三氟甲烷磺酰亚胺锂用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率。

浙江大学工程力学系曲绍兴教授与贾铮教授课题组研发了一种具有优异力学性能的全固态离子导电弹性体,成果以《AMechanicallyRobustandVersatileLiquid-FreeIonicConductiveElastomer》为题发表在材料领域**期刊AdvancedMaterials上。他们将酯类单体乙二醇甲醚丙烯酸酯(MEA)、丙烯酸异冰片酯(IBA)和双三氟甲烷磺酰亚胺锂(LiTFSI)按一定比例混合,通过自由基聚合的方法,制备了一种新型的全固态离子导电弹性体。该材料中高分子网络与离子间存在大量氢键与锂键,这些氢键与锂键起到物理交联点的作用并且在材料受拉伸时可发生断裂、耗散大量能量,使得该离子导电弹性体拥有极好的力学性能。此外,该离子导电弹性体具有非晶结构(图1b)和良好的透明度。含盐量为0.5M的离子导电弹性体的可拉伸性超过1600%,其工作温度窗口在-14.4゜(相转变温度)到200゜(热分解温度,图1e)之间,相比水凝胶而言具有极高的温度稳定性。

麻省理工学院发现电解质阴离子基团效应可将锂离子电池交换电流密度提升百倍据先进能源科技战略情报研究中心9月2日消息,麻省理工学院Yet-MingChiang教授研究团队发现电解质阴离子基团效应可将锂离子电池交换电流密度提升百倍。团队首先通过湿化学方法制备了锂钴氧复合电极(LiNi0.33Mn0.33Co0.33O2,NMC)复合块体电极,随后从块体电极分离出单个NMC电极颗粒,置于不同的电解质环境中,进行一系列的电化学性能测试。电化学阻抗谱和恒电位间隙滴定测试显示,相比六氟磷酸锂(LiPF6)电解质电池,采用双三氟甲烷磺酰亚胺锂(LiTFSI)离子传输效率更高,其交换电流密度大幅提升,且随充电电压增加而增大,最大值提升了100倍。这为设计开发高性能的锂电池电解质提供了重要科学理论参考。相关研究成果发表在《NatureEnergy》。双三氟甲烷磺酰亚胺锂包装: 5KG、50KG桶。

近日,马里兰大学Chunsheng Wang教授课题组牵头设计制备了全新的超高浓度的Zn离子水系电解质,应用于Zn离子电池,有效地抑制了枝晶的形成,从而***地增强电池性能和循环寿命。研究人员将1摩尔的双三氟甲烷磺酰亚锌(Zn(TFSI)2)、20摩尔双三氟甲烷磺酰亚胺锂(LiTFSI)和水溶剂混合配置成pH为中性的高浓度Zn离子电解质,随后与Zn负极组成半电池进行恒电流循环测试。结果显示,基于中性高浓度锌离子电解质的半电池循环次数可达500余次,即循环寿命长达170小时;相反,采用传统碱性电解质循环寿命大幅缩减至5小时。扫描电镜表征显示,采用中性高浓度锌离子电解质电池Zn电极表面循环反应前后均呈现光滑的表面,即没有枝晶形成,而采用碱性电解质的电池Zn电极则出现明显的“树突”状枝晶。双三氟甲烷磺酰亚胺锂外观: 白色结晶或粉末。发展双三氟甲烷磺酰亚胺锂剂量

双三氟甲烷磺酰亚胺锂的主要运输方式。湖南双三氟甲烷磺酰亚胺锂公司

PDES-CPE的制备过程示意图。将四种固体粉末:丁二腈(SN)、双三氟甲烷磺酰亚胺锂(LiTFSI)、二氟草酸硼酸锂(LiDFOB)和一种合成的单体甲基丙烯酸(2-(((2-氧代-1,3-二氧戊烷基-4-基)甲氧基)甲酰胺基))-乙酯(CUMA)均匀混合得到熔融的前驱体,加入具有正极、负极、隔膜的电池中,在60 ℃充分聚合得到含有PDES-CPE的电池。通过截面扫描电镜图和能谱图看出,正极和电解质呈现出紧密的接触,原位聚合的电解质可以均匀渗透到工业水平的正极(70 μm,26 mg/cm2)中,有益于界面阻抗的降低和界面的离子传输。根据PDES-CPE聚合前后的1H核磁共振谱,通过聚合后的单体和残余单体所对应的峰的积分面积计算,得出PDES-CPE的聚合转化率高达99.8 %(图1c)。CUMA中的甲基丙烯酸酯结构在聚合时具有快速的链增长动力学性能,且其聚合物自由基中间体与SN或锂盐之间的链转移反应较少;另外,CUMA较短的链长使得其在链增长过程中反应活化能较低,决定了PDES-CPE的高聚合转化率。湖南双三氟甲烷磺酰亚胺锂公司

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责