双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

基于上述研究基础,又开展了LiPF6添加剂改性LiTFSI-LiBOB双盐电解质的研究工作。研究表明,适量的LiPF6添加剂可以诱导EC溶剂开环、聚合,使生成的SEI膜表面富含poly(CO3)成分,SEI膜表面由此变的致密、光滑,可以有效抑制锂枝晶的生长。该研究成果以“Electrolyteadditiveenabledfastchargingandstablecyclinglithiummetalbatteries”为题,发表在Nat.Energy2017,2,17012(JianmingZheng,MarkH.Engelhard,DonghaiMei,ShuhongJiao,BryantJ.Polzin,Ji-GuangZhang(通讯作者)WuXu(通讯作者))。但是,该LiPF6改性Imide-Orthoborate双盐电解质体系对应的锂金属负极的库仑效率仍不高,只有90.6%左右。为了进一步提升对应锂金属的库仑效率,优化了LiTFSI-LiBOB双盐电解质体系中的溶剂比例,同时使用了组合添加剂(LiPF6 + VC + FEC),发现对应锂金属负极库仑效率可提升至98.1%。双三氟甲烷磺酰亚胺锂作为六氟磷酸锂的升级产品,可改善锂电池循环性能、高温性能和存储性能。电机双三氟甲烷磺酰亚胺锂现价

一般而言,电解液中有机溶剂和溶质容易分析并模仿,但添加剂成分通常很难分析出来。可以说,添加剂的成分是电解液企业的技术**所在。常见的添加剂分类包括SEI(改善石墨负极表面的固体电解质界面膜性能)成膜添加剂、抗过充添加剂、阻燃添加剂、稳定添加剂、浸润添加剂、除酸除水添加剂等等。常见的添加剂有双草酸硼酸锂(LiBOB)、二氟草酸锂(LiDFOB)、双三氟甲烷磺酰亚胺锂(LiTFSI)和双氟磺酰亚胺锂(LiFSI)等。以其中的LiFSi为例,目前全球范围内*有日本的触媒公司实现产业化生产,国内的氟特电池(新三板.上市公司)目前有小批量出货,因此相对于日韩企业来讲,目前国内电解液企业在添加剂方面处于相对落后的地位。进口双三氟甲烷磺酰亚胺锂报价多氟芳香环与双三氟甲烷磺酰亚胺锂进行混合形成呈近晶相的液晶电解质。

研究了双三氟甲烷磺酰亚胺阴离子Tf2N分别与5种不同阳离子组成的离子液体对产紫青霉菌(PenicilliumpurpurogenumLi-3)的生长、代谢、细胞膜透性及全细胞催化活性的影响结果表明,[N1,4.4,4]Tf2N对产紫青霉菌的生长有促进作用,[Py14]Tf2N,[Bmim]Tf2N,[BPy]Tf2N和[P6.4.4,4]Tf2N4种离子液体对产紫青霉菌的生长则均有不同程度的抑制。代谢活力保留值R的测定结果表明,[P6.4.4,4]Tf2N和[N14.4.4JTf2N对产紫青霉菌体细胞表现出相对较高的生物相容性;5种离子液体对菌体细胞的细胞膜透性均有改善作用。全细胞催化反应数据显示比较好离子液体为[Py14]Tf2N,当其加入量为25%,反应84h后,单葡萄糖醛酸基甘草次酸(GAMG)产率高达95.38%。5种离子液体对产紫青霉菌的生长、代谢、细胞膜透性及全细胞催化活性的影响不仅与阴离子Tf2N有关阳离子的组成、结构和性质也发挥重要的作用。

膦酸酯中作为电解液阻燃溶剂(共溶剂)应用**多的是DMMP。XIANG等发现DMMP基阻燃电解液与Li4Ti5O12负极材料兼容性良好,该阻燃电解液被成功用于高能量密度高电压LiNi0.5Mn1.5O4/Li4Ti5O12全电池体系中。ZENG等以DMMP为主溶剂开发出适用于LiFePO4/SiO全电池体系的阻燃型电解液。WU等将双三氟甲烷磺酰亚胺锂(LiTFSI)作为主盐溶解于一种新型磷酸酯主溶剂中,二甲基(2-甲氧基乙氧基)甲基磷酸酯[dimethyl(2-methoxyethoxy) methylphosphonate,DMMEMP],该阻燃型电解液与金属锂片兼容性良好,适用于LiFePO4/Li电池体系。磷腈类化合物作为阻燃电解液溶剂(共溶剂)的报道较少,ROLLINS等报道了一种氟代六烷氧基环三磷腈[FM-2]共溶剂,能够提高电化学稳定窗口、热稳定性和安全性能高,利于稳定SEI膜,该阻燃电解液被成功应用于石墨/(锰酸锂+三元材料)全电池体系中,当使用量为20%时,可以明显改善全电池的循环性能。双三氟甲烷磺酰亚胺锂外观: 白色结晶或粉末。

吉林大学孙俊奇教授研究小组报道了一种具有自修复性能和高离子导电率的柔性固态凝胶电解质。该凝胶电解质由含有2-脲基-4[H]啶酮(UPy)基团的聚离子液体,咪唑类离子液体和锂盐(双三氟甲烷磺酰亚胺锂)的**溶液经溶剂挥发和热压的方法制备而成。其中,UPy基团间的四重氢键将聚离子液体交联从而形成了稳定的聚离子液体网络。同时,由于聚离子液体和离子液体的相容性和静电相互作用,上述聚离子液体网络可以负载大量的离子液体(离子液体为聚离子液体质量的3.5倍)从而形成了固态的离子液体凝胶(Ionogel)电解质。该凝胶电解质的离子导电率高达1.41×10-3S/cm,同时表现出良好的柔性、弹性和优异的不可燃烧性质。基于该凝胶电解质组装的Li|Ionogel|LiFePO4电池表现出了良好的充放电循环性能,该电池在0.2C倍率下循环120周期后的放电容量和库伦效率分别为147.5mAh g-1和99.7%,上述性能均优于同等条件下以离子液体或传统的液态电解液作为电解质所组装的电池。双三氟甲烷磺酰亚胺锂用于通过对应的三氟甲基磺酸盐的阴离子置换反应制备手性咪唑鎓盐。电机双三氟甲烷磺酰亚胺锂现价

双三氟甲烷磺酰亚胺锂水分:小于100ppm(水分一般在40ppm左右)。电机双三氟甲烷磺酰亚胺锂现价

离子液体由阴、阳离子两部分组成, 阴离子通常有、、TFSI-、FSI-等,阳离子通常有吡咯类、咪唑类、哌啶类和季铵盐类等。离子液体具有挥发性极小、不燃、电化学稳定窗口宽、溶解能力强、热稳定性高等特点,既适合应用于高电压电解液,又适合制备阻燃型电解液,提高锂离子电池安全性。尽管如此, 由于纯离子液体黏度大,且与隔膜、电极材料的浸润性差,锂离子的迁移受到极大限制;另外,大多数的离子液体与碳基负极的兼容性差,因而,纯离子液体较难作 为电解液直接用于锂离子电池。实际上,离子液体通常与碳酸酯类、砜类或氟代醚类等溶剂混合使用来制备阻燃型高性能电解液。与碳酸酯混合使用配制阻燃型电解液的吡咯类离子液体有PYR14TFSI 或BMP-TFSI、N-丙基-N-甲基吡咯-二(三氟甲基磺酰)亚胺、N-乙基-2-甲氧基吡咯-双氟磺酰亚胺。KIM等报道与碳酸酯溶剂混合后电解液阻燃效果优异,且能保证LiFePO4/Li体系60 ℃高温的稳定运行。与碳酸酯混合的代表性哌啶类离子液体有N-甲基-N-丙基哌啶-二(三氟甲基磺酰)亚胺、1-乙基-1-甲基哌啶-二(三氟甲基磺酰)亚胺。电机双三氟甲烷磺酰亚胺锂现价

与双三氟甲烷磺酰亚胺锂相关的文章
与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责