相较于电弧离子镀膜和真空蒸发镀膜等技术,磁控溅射镀膜技术制备的膜层组织更加细密,粗大的熔滴颗粒较少。这是因为磁控溅射过程中,溅射出的原子或分子具有较高的能量,能够更均匀地沉积在基材表面,形成致密的薄膜结构。这种细密的膜层结构有助于提高薄膜的硬度、耐磨性和耐腐蚀性等性能。磁控溅射镀膜技术制备的薄膜与基材之间的结合力优于真空蒸发镀膜技术。在真空蒸发镀膜过程中,膜层原子的能量主要来源于蒸发时携带的热能,其能量较低,与基材的结合力相对较弱。而磁控溅射镀膜过程中,溅射出的原子或分子具有较高的能量,能够与基材表面发生更强烈的相互作用,形成更强的结合力。这种强结合力有助于确保薄膜在长期使用过程中不易脱落或剥落通过控制溅射参数,如气压、功率和靶材与基材的距离,可以获得具有不同特性的薄膜。江苏高温磁控溅射流程

该研究所将磁控溅射技术与半导体器件封装工艺深度融合,开发了高性能金属化薄膜制备方案。针对 MEMS 器件的微型化需求,采用射频磁控溅射技术在硅基衬底上沉积 Ti/Au 复合金属层,通过控制靶基距与基片温度,使金属膜层厚度精度达到 ±2nm。创新的多层溅射工艺有效解决了金属与硅基底的界面结合问题,经剪切测试验证,膜基结合强度超过 50MPa。该技术已应用于生物芯片的电极制备,使芯片检测灵敏度提升一个数量级,为精细医疗检测提供了关键材料支撑。江苏高温磁控溅射流程磁控溅射制备的薄膜可以用于制备传感器和执行器等器件。

磁控溅射沉积的薄膜具有优异的机械性能和化学稳定性。首先,磁控溅射沉积的薄膜具有高密度、致密性好的特点,因此具有较高的硬度和强度,能够承受较大的机械应力和磨损。其次,磁控溅射沉积的薄膜具有较高的附着力和耐腐蚀性能,能够在恶劣的环境下长期稳定地工作。此外,磁控溅射沉积的薄膜还具有较好的抗氧化性能和耐热性能,能够在高温环境下保持稳定性能。总之,磁控溅射沉积的薄膜具有优异的机械性能和化学稳定性,广泛应用于各种领域,如电子、光学、航空航天等
该研究所针对磁控溅射的薄膜应力调控难题,提出了多参数协同优化策略。通过调节磁控溅射的基片偏压与沉积温度,实现薄膜内应力从拉应力向压应力的连续可调 —— 当基片偏压从 0V 增至 - 200V 时,TiN 薄膜的压应力从 1GPa 提升至 5GPa;而适当提高沉积温度可缓解过高应力导致的薄膜开裂问题。这种调控机制使薄膜应力控制精度达到 ±0.2GPa,成功解决了厚膜沉积中的翘曲变形问题,为功率电子器件的金属化层制备提供了关键技术保障。在磁控溅射的产业化应用拓展中,研究所与企业合作开发了建材用功能薄膜生产线。采用连续式磁控溅射设备,在浮法玻璃表面沉积低辐射薄膜,通过优化靶材组合与溅射速度,使玻璃的红外反射率达到 80% 以上,隔热性能提升 40%。该生产线集成了在线厚度监测与反馈控制系统,可实现单机年产上百万平方米镀膜玻璃,产品已应用于绿色建筑项目。相较于传统镀膜技术,该磁控溅射工艺的能耗降低 25%,符合节能环保的产业发展需求。磁控溅射制备的薄膜可以用于制备超导电缆和超导磁体。

针对深紫外光电子器件的 材料需求,研究所开展了磁控溅射制备 AlN 薄膜的专项研究。借鉴异质外延技术思路,在不同晶面取向的蓝宝石衬底上采用反应磁控溅射沉积 AlN 薄膜,并结合高温退火工艺优化晶体质量。研究发现,经 1700℃退火后,c 面蓝宝石衬底上的 AlN(0002)摇摆曲线半高宽低至 68 arsec,点缺陷密度 降低,深紫外透射率大幅提升。该技术为制备大尺寸、高质量的非极性 AlN 薄膜提供了新途径,有望解决深紫外器件中的极化电荷积累问题。磁控溅射过程中,溅射颗粒的能量分布对薄膜的性能有重要影响。安徽磁控溅射联系商家
磁控溅射制备的薄膜可以用于制备生物医学材料和生物传感器。江苏高温磁控溅射流程
针对磁控溅射的产业化效率瓶颈,广东省科学院半导体研究所设计了多工位集成磁控溅射镀膜装置。该装置包含多个靶材单元、套设于外部的磁场发生单元及多通路真空发生单元,通过 连接部将靶材与被镀工件中空腔体连通,第二连接部实现与真空腔体的匹配对接。这种设计可在单一磁场系统内形成多个 真空镀膜环境,实现多根工件同时镀膜,生产效率较传统单工位设备提升 4-6 倍。该装置尤其适用于半导体封装用金属化部件的批量制备,已在多家合作企业实现规模化应用,单条生产线年产能突破百万件。江苏高温磁控溅射流程