碳化硅陶瓷的几个主要应用领域及用途:1、机械密封,为了改进性能,节约燃料,延长保修期,汽车工业对冷却系统提出了更高的要求。由于汽车冷却系统温度和压力的提高,要求水泵具有更高的速度,承担更高的负载。提高水泵使用寿命的重要因素之一是机械密封问题。2、工业窑炉,轻工、建材、电子等行业大量使用各种工业窑炉,采用不同材质碳化硅窑具的组合,可以大幅度减少窑具重量及其所占据的空间,提高能量利用率,减轻工人劳动强度。同时由于48碳化硅部件优异的抗熟冲击性能,烧成升温速度可以加快。碳化硅重要的导电特性使得其是制造1000℃以上加热炉发热元件的较主要材料。吉林常压烧结SiC陶瓷
实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较多,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等较强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,反应烧结SiC陶瓷抗弯强度急剧下降。陕西非标定制SiC陶瓷全世界已有65%以上的大型高炉采用了氮化硅结台碳化硅材料作为炉身材料。
碳化硅陶瓷的用途:1、能源环保,将煤气在高温下直接净化,可充分利 Hexolov热交换器用煤气的显热,比之常温净化可较大程度上提高热效率,将高温净化后的煤气直接用于燃气轮机发电,可以较大程度上提高供电效率,减低有害物的排量,节约用水。现代燃煤发电系统中燃气轮机设备的使用与环境保护的标准都要求实现高温燃气直接除尘。2、工业窑炉,轻工、建材、电子等行业大量使用各种工业窑炉,采用不同材质碳化硅窑具的组合,可以大幅度减少窑具重量及其所占据的空间,提高能量利用率,减轻工人劳动强度。
实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较多,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等较强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。碳化硅陶瓷结构性能稳定,耐高温性能好,并且可重复使用。
碳化硅陶瓷具有较好的适应外界环境的能力,能够满足抗腐蚀环境,或者是耐高温环境的使用需求,应用领域普遍,在碳化硅陶瓷的烧结方式上,大致可以分为四种,以下是这4种碳化硅陶瓷的烧结方式及特点!1974年美国GE公司通过在高纯度β-SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020℃成功地获得高密度SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。美国GE公司研究者认为:晶界能与表面能之比小于1.732是致密化的热力学条件,当同时添加B和C后,B固溶到SiC中,使晶界能降低,C把SiC粒子表面的SiO2还原除去,提高表面能,因此B和C的添加为SiC的致密化创造了热力学方面的有利条件。在高新技术领域发展起来的超细碳化硅粉体制备的方法。海南碳化硅陶瓷棒
热压添加剂:一类是与SiC形成固溶体降低晶界能促进烧结。吉林常压烧结SiC陶瓷
碳化硅多孔陶瓷材料具有如下特点:(1)物理和化学性质稳定:碳化硅多孔陶瓷材料可以耐酸、碱腐蚀,也能够承受高温、高压,自身洁净状态好,不会造成二次污染,是一种绿色环保的功能材料;(2)过滤精度高,再生性能好:用作过滤材料的多孔陶瓷材料具有较窄的孔径分布范围和较高的气孔率与比表面积,被过滤物与陶瓷材料充分接触,其中的悬浮物、胶体物及微生物等污染物质被阻截在过滤介质表面或内部,过滤效果良好。碳化硅多孔陶瓷过滤材料经过一段时间的使用后,用气体或者液体进行反冲洗,即可恢复原有的过滤能力。吉林常压烧结SiC陶瓷