化学溶解法化学溶解法是利用各种纤维的化学组成不同,在各种化学溶液中溶解性能各异的原理来鉴别纤维。在试验时,必须严格控制测试条件,按照规定的溶液浓度、溶液温度和作用时间来处理。选用的6种化学试剂对聚苯硫醚纤维的溶解试验。可以看出,聚苯硫醚纤维溶解于沸腾的硫酸(95%~98%)和硝酸(65%),溶液颜色分别呈现黑色和黄色。熔点法高聚物内晶体完全消失时的温度,即晶体熔化时的温度称为熔点。熔点法一般适用于鉴别熔点特征明显的合成纤维,因为合成纤维在高温作用下,大分子链接结构发生变化,先软化而熔融;熔点法不适用于天然纤维素纤维、再生纤维素纤维和蛋白质纤维,这是因为它们的熔点高于分解点,在高温作用下不熔融而分解或炭化。经测试,聚苯硫醚纤维的熔点为284℃,熔点法适用于纯聚苯硫醚纤维鉴别,不适用于混纺产品。聚苯硫醚在负荷下的耐蠕变性好,硬度高;耐磨性高,其1000转时的磨耗量只有0.04g.长治磺化聚苯硫醚合成
什么是聚苯硫醚?我们还得先从聚芳硫醚(PAS)说起。聚芳硫醚是指分子主链结构为硫和芳基交替连接的一类高分子聚合物,比如聚苯硫醚砜(PPSSU)、聚苯硫醚酮(PPSK)等。由于这类聚合物的分子链中含有硫和芳基结构,所以它们具有优良的耐高温、耐腐蚀、耐辐射、阻燃、尺寸稳定性以及优良的电性能。在聚芳硫醚聚合物中,聚苯硫醚(PPS)是**典型、**重要、**常见的。聚苯硫醚全称聚次苯基硫醚,英文为PolyphenyleneSulfide,所以也被称为PPS,按照实用分子量数量差异可以将其划分为涂料级、注塑级、纤维级、挤出级/薄膜级。聚苯硫醚的分子主链是由苯环和硫原子交替排列形成的,苯环结构赋予了聚苯硫醚刚性,硫醚键提供了一定的柔顺性,结合聚芳硫醚聚合物所具备的优良性能,使得聚苯硫醚被广泛应用在电子电气、机械、航天航空、化工等领域。 江苏增韧聚苯硫醚纤维聚苯硫醚有吸水率极小,一般只有0.03%左右。
聚苯硫醚的物料性能
1、电绝缘性(尤其高频绝缘性)优良,白色硬而脆,跌落于地上有金属响声,透光率只次于有机玻璃,着****耐水性,化学稳定性良好。有优良的阻燃性,为不燃塑料。
2、强度一般,刚性很好,但质脆,易产生应力脆裂,不耐苯.汽油等有机溶剂.长期使用温度可达260度,在400度的空气或氮气中保持稳定。通过加玻璃纤维或其它增强材料改性后,可以使冲击强度大为提高,耐热性和其它机械性能也有所提高,密度增加到1.6-1.9,成型收缩率较小到0.15-0.25%适于制作耐热件.绝缘件及化学仪器.光学仪器等零件。
PPS:一种热塑性树脂。白色粉du末。密度1.34。熔点288℃。在空气中可于280℃连zhi续使用dao。可耐硫酸、盐酸、磷酸、氢氟酸、氢氧化钠、氢氧化钾、过氧化氢等侵蚀。但不耐硝酸。不溶于一般有机溶剂。有优良的耐热性和自熄性。在空气中加热到450~500℃不分解,化学交联后的聚合物可耐热600℃以上。有极好的粘合性能,能粘合玻璃、陶瓷、钢材、铝、银、镀铬和镀镍制品等。经特殊的掺杂处理,即成优良的高分子导电材料。广用于制耐高温胶粘剂、涂料、层压材料、电器薄膜、模塑制品、合成纤维等。由对二氯苯和硫化钠经缩聚而制得。聚苯硫醚一般交联后的熔融**达到10~20为宜;进行玻璃纤维增强聚苯硫醚的熔融可大一些,但不能大于200。
PPS玻纤增强系列(1)PPSD2采用美国进口树脂改性加上玻纤20%抽粒而成,是一种超韧性增强高光新料,耐水解,耐化学,耐腐蚀,缺口冲击:20耐温:255℃(2)PPSD3采用美国进口树脂改性加上玻纤30%抽粒而成,是一种高韧性增强高光新料,耐寒,耐水解,耐腐蚀,耐化学。缺口冲击:18耐温:260℃(3)PPSD4采用美国进口树脂改性加上玻纤40%抽粒而成,是一种高韧性增强高光新料,耐高温,耐水解,耐化学,缺口冲击:14耐温:265℃(4)PPSD5采用美国进口树脂改性加上玻纤45%抽粒而成,是一种高冲击增强高光新料,绝缘性优良,热稳定性高CT1缺口冲击:12耐温:265℃(5)PPSD5-1采用美国进口树脂改性加上玻纤45%抽粒而成,是一种低飞边高光新料,耐磨,防滑,尺寸稳定性好缺口冲击:11耐温:265℃[5]PPS玻矿纤增强系列(1)PPSD6采用美国进口树脂改性加上玻矿纤55%抽粒而成,是一种低翘曲高光新料,热稳定性高,尺寸稳定性好,耐热缺口冲击:9耐温:265℃(2)PPSD7采用美国进口树脂改性加上玻矿纤65%抽粒而成,是一种低翘曲高光新料,热稳定性高,尺寸稳定性好,耐热缺口冲击:9耐温:265℃聚苯硫醚用于汽车工业占45%左右,主要用于汽车功能件。江苏增韧聚苯硫醚纤维
工程塑料:制造汽车零部件、防腐涂层、电器绝缘材料等。长治磺化聚苯硫醚合成
红外吸收光谱法当一定波长的红外光照射到被测样品上时,该物质分子中某个基团的振动频率和它一样,两者就会发生共振,此时光的能量通过分子偶极矩的变化传递给分子,这个基团就会吸收该频率的红外光而发生振动能级的跃迁,产生红外吸收峰。红外光谱法鉴别纤维是根据组成纤维分子的各种化学基团,无论存在于何种化合物中都有自己特定的红外吸收带的位置,不同纤维有不同的红外吸收谱图,将测得试样的红外光谱图与已知纤维的红外光谱图核对比较,就可以推断出纤维含有哪种基团和化学键以及各自数量的多少,以此来鉴别纤维的种类。红外光谱的波长范围大约为0.75~1000μm,通常将红外光谱分为近红外区、中红外区和远红外三个区域,其波长、波数之间的关系见表3。一般近红外光谱是由分子的倍频、合频产生的,中红外光谱属于分子的基频振动光谱,远红外光谱则属于分子的转动光谱和某些基团的振动光谱。由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红外区是研究和应用**多的区域,通常所说的红外光谱即指中红外光谱。长治磺化聚苯硫醚合成