无机荧光颜料和有机荧光颜料在化学结构上存在的区别: 1、无机荧光颜料的化学结构: 无机荧光颜料通常是以金属离子(如锌、镉、锶等)与非金属离子(如硫、硒、碲等)形成的化合物为主要成分。以硫化锌荧光颜料为例,其结构是以锌离子(Zn²⁺)和硫离子(S²⁻)形成的晶格结构。在这种结构中,常常会有少量的铜离子、锰离子等,掺入晶格中形成缺陷,这些缺陷在吸收外界能量后,电子会在缺陷能级和导带之间发生跃迁,当电子回到基态时,就会释放出光能,产生荧光现象。 2、有机荧光颜料的化学结构: 有机荧光颜料一般具有大的共轭体系结构,例如多环芳烃、香豆素、罗丹明、荧光素等化合物。这些分子结构中的π电子能够在分子内形成离域的共轭体系。这种共轭结构使得分子的能级差减小,电子更容易被激发。当分子吸收一定波长的光后,电子从基态跃迁到激发态,经过一系列的能量转移和弛豫过程,激发态电子回到基态时以荧光的形式释放出能量。荧光颜料的粒径较细,这有助于其在各种介质中均匀分散,并提供更好的着色效果和荧光效果。绿色荧光颜料制造商
长余辉荧光颜料的发光原理主要基于固体激发态和电子复合态之间的能级跃迁这一独特的物理过程。 当长余辉荧光颜料受到外界光源,如太阳光、白炽灯光、紫外灯光等的照射时,材料内部的电子会吸收光子的能量,从而被激发到高能级状态。在这个激发过程中,大量的电子获得了足够的能量,跃迁到更高的能级轨道上。 当外界的光源消失后,处于高能级状态的这些电子并不会立即回到初始的低能级状态,而是会逐渐地、缓慢地回到低能级状态。在电子从高能级向低能级回迁的过程中,电子所携带的多余能量会以光子的形式释放出来,进而发出可见光。 这种独特的发光过程不需要外部电源的持续支持,依靠前期吸收的外界光源能量就能实现持续发光,因此具有较好的节能环保的特点。在实际应用中,这种无需外接能源就能长时间发光的特性,使得长余辉荧光颜料具备了较广的应用前景和巨大的应用价值。国产荧光颜料供应WZ系列荧光颜料以热塑性树脂为载体,荧光强度和分散性能良好,不含甲醛、重金属和24种禁用芳香胺。
荧光颜料色牢度不好的原因是多方面的。 1、从颜料自身来讲,部分荧光颜料的化学结构稳定性欠佳,在外界环境作用下,分子容易发生变化,致使颜色改变,色牢度降低。其次,在使用过程中,颜料与应用介质的相容性差,导致颜料在介质中分散不均、团聚,使得颜料与介质的结合力弱,容易脱落。 2、应用工艺不当也是重要因素。比如,施工时温度过高或过低、干燥速度过快或过慢,都会影响颜料在基质中的嵌入与附着;涂层厚度不均匀或过厚、过薄,都会使颜料的固定效果变差。 3、外界环境的影响不可忽视。长期暴露在光照下,特别是紫外线的辐射,会使荧光颜料分子的化学键断裂,造成褪色;环境中的湿度和温度变化,也会加速颜料分子的老化和变质,降低色牢度。
荧光颜料的粒径大小对其性能和应用有重要影响 一般来说,荧光颜料的粒径范围跨度较大。纳米级的荧光颜料粒径通常在 1 - 100 纳米之间;而微米级的荧光颜料粒径大致在 1 - 100 微米范围内 较小粒径(纳米级)的荧光颜料具有以下特点: 1、透明度:能更好地保持应用介质的透明度,如在透明涂料或塑料中应用时,不会影响材料的透明性。 2、颜色纯度:发色效果好,颜色纯度高,色彩鲜艳。 3、分散性:在介质中分散性较好,容易形成均匀的体系 较大粒径(微米级)的荧光颜料: 1、遮盖力:具有较强的遮盖能力,适合需要遮盖底色的应用场景。 2、稳定性:某些情况下,物理和化学稳定性可能相对较好 例如,在电子产品的显示领域,可能更多使用纳米级荧光颜料来实现高分辨率和高色彩精度;而在道路标线涂料中,微米级荧光颜料因其较好的遮盖力和耐候性被大众所应用 荧光颜料可应用于多种领域,如色母粒、模塑和挤出、吹塑制品、液体着色剂。
一、荧光粉迁移性带来的影响主要包括: 1、发光性能变化:迁移可能导致荧光粉在局部区域的浓度发生变化,使得发光的均匀性变差,发光强度和颜色也可能出现偏差。 2、产品外观问题:在塑料制品中,荧光粉的迁移可能导致产品表面出现色斑、色纹等外观缺陷,影响产品的美观度和质量。 3、使用寿命缩短:荧光粉的迁移会加速其性能的衰减,降低产品的使用寿命和可靠性。 二、为了降低荧光粉的迁移性,可以采取以下措施: 1、对荧光粉进行表面处理,如包覆、接枝等,提高其与介质的相容性和结合力。 2、优化配方,选择与荧光粉相容性好的树脂、溶剂等介质,并合理调整各组分的比例。 3、改进加工工艺,控制加工过程中的温度、压力、剪切力等参数,减少对荧光粉分布的影响。荧光颜料的透明度较高,能够很好地显示出底材的颜色,同时不影响底材的质感。青海荧光粉生产厂家
荧光颜料按载体树脂性质可分为热塑性、热固性、可溶解色精和水乳型。绿色荧光颜料制造商
荧光颜料良好的易分散性具有以下几个方面的优势: 1、均匀的光学性能 当荧光粉能够均匀分散在应用体系中时,可使整个体系的发光效果均匀一致,避免出现局部发光过强或过弱的现象,从而保证产品在颜色、亮度等方面的均匀性和稳定性。例如在制作荧光灯时,如果荧光粉分散不均,会导致灯管发光不均匀,影响照明效果。 2、提高发光效率 均匀分散有助于荧光粉充分吸收激发能量并转化为发光,从而提高发光效率和亮度。以荧光涂料为例,如果荧光粉分散良好,涂料在受到激发光照射时能够更充分地发光,达到更好的荧光效果。 3、产品质量稳定性 分散性好的荧光粉可以在产品的生产过程中保持稳定的性能,减少因颗粒团聚或沉淀导致的产品质量波动。例如在塑料加工中,如果荧光粉分散不均,可能会导致塑料制品在不同部位的荧光性能差异较大,影响产品的整体质量和一致性。绿色荧光颜料制造商