双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

吉林大学孙俊奇教授研究小组报道了一种具有自修复性能和高离子导电率的柔性固态凝胶电解质。该凝胶电解质由含有2-脲基-4[H]啶酮(UPy)基团的聚离子液体,咪唑类离子液体和锂盐(双三氟甲烷磺酰亚胺锂)的**溶液经溶剂挥发和热压的方法制备而成。其中,UPy基团间的四重氢键将聚离子液体交联从而形成了稳定的聚离子液体网络。同时,由于聚离子液体和离子液体的相容性和静电相互作用,上述聚离子液体网络可以负载大量的离子液体(离子液体为聚离子液体质量的3.5倍)从而形成了固态的离子液体凝胶(Ionogel)电解质。该凝胶电解质的离子导电率高达1.41×10-3S/cm,同时表现出良好的柔性、弹性和优异的不可燃烧性质。基于该凝胶电解质组装的Li|Ionogel|LiFePO4电池表现出了良好的充放电循环性能,该电池在0.2C倍率下循环120周期后的放电容量和库伦效率分别为147.5mAh g-1和99.7%,上述性能均优于同等条件下以离子液体或传统的液态电解液作为电解质所组装的电池。双三氟甲烷磺酰亚胺锂产品证书。品质双三氟甲烷磺酰亚胺锂温度计

将具备优良化学稳定性及高电导率的双三氟甲烷磺酰亚胺锂(LiTFSI)溶于1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐。(EMIM-TFSI)离子液体中制成LiTFSI-EMIM-TFSI电解液加入环氧乙烯基酯树脂(VER)中对其进行改性。结果表明,添加了上述电解液后的锂离子电解液/环氧,乙烯基酯树脂(LiTFSI-EMIM-TFSI/VER)体系可通过FTIR检测到离子液体的特征吸收峰。随着电解液含量的增加,LiTFSI-EMIIM-TFSI/VER体系的孔隙率逐渐增大,沟壑与片层结构逐渐增多。这一变化有利于锂离子的传导,提高体系的电学性能,同时可在一定程度上改善树脂的塑性和韧性提高LiTFSI-EMIM-TFSI/VER体系的力学性能。在本实验中,当电解液含量为40wt%时,LiTFSI-EMIM-TFSI/VER体系多功能性得以比较好地实现。青海新能源双三氟甲烷磺酰亚胺锂双三氟甲烷磺酰亚胺锂消费地区。

市发改委主动服务,积极为企业解读产业政策,想企业所想,急企业所急,帮助企业探寻发展路径,对标国家出台的产业政策,谋划发展项目。一是推动医药企业智能化发展。引导企业创新发展理念打造”智能制造+绿色制造+共享平台”新商业模式,构建‘共享智能工厂”新生态。二是推动装备制造**化发展。发展黑土地保护性耕作、秸秆还田收贮、收割机、深松机、整地机等农业机械,以及设施农业、畜禽屠宰等农牧及加工机械,打造农机装备产业链,发展创新平台,研发**装备。三是推动化工新材料创新发展。发展氯磺酰异氰酸酯锂电池电解液新材料,推进双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)国产化,提升国际竞争力。四是推动冶金建材业绿色化发展。重视绿色制造,推进产品全生命周期的绿色管理进程,推进金钢钢铁低碳非高炉炼铁改造,发展绿色低碳冶金建材产业。

中科院物理研究所李泓和禹习谦研究员等人采用原位微分电化学质谱(DEMS)来研究LiCoO2|PEO-LiTFSI|Li电池中的产气行为。通过实验和理论计算表明,LiCoO2的表面催化作用是PEO在4.2 V意外析出H2气体的根本原因。使用稳定的固态电解质Li1.4Al0.4Ti1.6(PO4)3(LATP)对LiCoO2表面进行包覆可以减轻这种表面催化作用,并将电池工作电压扩展到4.5 V以上。同时还解释了产气的原因:双三氟甲烷磺酰亚胺(HTFSI)在正极侧因被氧化脱水而产生,并在负极极侧与金属锂反应导致了氢气的析出。相关研究成果以“Increasing Poly(ethyleneoxide) Stability to 4.5 V by Surface Coating of the Cathode”为题发表在ACS Energy Letters上。咪唑类离子液体和双三氟甲烷磺酰亚胺锂的**溶液经溶剂挥发和热压的方法制备而成柔性固态凝胶电解质。

在高浓度电解液环境中,电极/电解液界面膜组成主要源于锂盐阴离子的氧化或还原分解,生成氟化锂(LiF),而富含LiF的界面膜相对稳定,从而可以有效减少界面发生的副反应。如在石墨负极表面,少许溶剂还原后形成不溶性的SEI组分,如Li2CO3和部分可溶的半碳酸盐和聚合物,锂盐阴离子还原的产物是典型的无机化合物,如LiF和Li2O,它们沉淀在电极表面形成-层无机-有机复合膜。该界面膜薄而致密,具有较强的机械稳定性,从而进一步改善电化学性能。且阴离子的结构也能影响界面的化学组成。Wang等研究表明在氟磺酰亚胺锂-双三氟甲烷磺酰亚胺锂(LiFSI+LiTFSI)中,SEI膜中LiF含量随LiFSI浓度增大而增加,这表明FSI-阴离子优先于TFSI在石墨负极表面发生分解,产生富含LiF和更稳定的SEI膜,从而进一步稳定电极/电解液的界面,提升库仑效率和循环稳定性。双三氟甲烷磺酰亚胺锂水分:小于100ppm(水分一般在40ppm左右)。宁夏多层双三氟甲烷磺酰亚胺锂

双三氟甲烷磺酰亚胺锂可用于制备离子液体。品质双三氟甲烷磺酰亚胺锂温度计

华南理工大学Min Zhu、Renzong Hu团队,以“Constructing Li‐Rich Artificial SEI Layer in Alloy‐Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All Solid‐State Lithium Metal Batteries”为题,在Advanced Materials期刊上发表***研究成果:通过在聚合物基聚(环氧乙烷)-双三氟甲烷磺酰亚胺锂复合固体电解质(简称PEOm)中添加锂基合金,构建了约60 nm厚的人造富锂界面层,实现了固体电解质的高离子电导率。高分辨率透射电子显微镜(HRTEM)和电子能量损失谱(EELS)显示,在锂基合金颗粒周围形成了一个非晶特征的人工界面层,锂在该界面层上呈梯度分布。电化学分析和理论建模表明,界面层提供了快速的离子传输路径,对实现PEOm-Li21Si5复合固体电解质的高稳定离子电导率起着关键作用。品质双三氟甲烷磺酰亚胺锂温度计

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责