采用并行总线的另外一个问题在于总线的吞吐量很难持续提升。对于并行总线来说, 其总线吞吐量=数据线位数×数据速率。我们可以通过提升数据线的位数来提高总线吞吐 量,也可以通过提升数据速率来提高总线吞吐量。以个人计算机中曾经非常流行的PCI总 线为例,其**早推出时总线是32位的数据线,工作时钟频率是33MHz,其总线吞吐量= 32bit×33MHz;后来为了提升其总线吞吐量推出的PCI-X总线,把总线宽度扩展到64位, 工作时钟频率比较高提升到133MHz,其总线吞吐量=64bit×133MHz。是PCI插槽 和PCI-X插槽的一个对比,可以看到PCI-X由于使用了更多的数据线,其插槽更长。
但是随着人们对于总线吞吐量要求的不断提高,这种提升总线带宽的方式遇到了瓶颈。首先由于芯片尺寸和布线空间的限制,64位数据宽度已经几乎是极限了。另外,这64根数据线共用一个采样时钟,为了保证所有的信号都满足其建立保持时间的要求,在PCB上布线、换层、拐弯时需要保证精确等长。而总线工作速率越高,对于各条线的等长要求就越高,对于这么多根信号要实现等长的布线是很难做到的。
用逻辑分析仪采集到的一个实际的8位总线的工作时序,可以看到在数据从0x00跳变到0xFF状态过程中,这8根线实际并不是精确一起跳变的。 幅度测量是数字信号常用的测量,也是很多其他参数侧鲁昂的基础。陕西校准数字信号测试

数字信号的建立/保持时间(Setup/HoldTime)
不论数字信号的上升沿是陡还是缓,在信号跳变时总会有一段过渡时间处于逻辑判决阈值的上限和下限之间,从而造成逻辑的不确定状态。更糟糕的是,通常的数字信号都不只一路,可能是多路信号一起传输来一些逻辑和功能状态。这些多路信号之间由于电气特性的不完全一致以及PCB走线路径长短的不同,在到达其接收端时会存在不同的时延,时延的不同会进一步增加逻辑状态的不确定性。
由于我们感兴趣的逻辑状态通常是信号电平稳定以后的状态而不是跳变时所的状态,所以现在大部分数字电路采用同步电路,即系统中有一个统一的工作时钟对信号进行采样。如图1.5所示,虽然信号在跳变过程中可能会有不确定的逻辑状态,但是若我们只在时钟CLK的上升沿对信号进行判决采样,则得到的就是稳定的逻辑状态。 山西数字信号测试价格优惠数字信号的带宽(Bandwidth);

采用AC耦合方式的另一个好处是收发端在做互连时不用太考虑直流偏置点的互相影响, 互连变得非常简单,对于热插拔的支持能力也更好。
(3)有利于信号校验。很多高速信号在进行传输时为了保证传输的可靠性,要对接收 到的信号进行检查以确认收到的信号是否正确。在8b/10bit编码表中,原始的8bit数据总 共有256个组合,即使考虑到每个Byte有正负两个10bit编码,也只需要用到512个10bit 的组合。而10bit的数据总共可以有1024个组合,因此有大约一半的10bit组合是无效的 数据,接收端一旦收到这样的无效组合就可以判决数据无效。另外,前面介绍过数据在传输 过程中要保证直流平衡, 一旦接收端收到的数据中发现违反直流平衡的规则,也可以判决数 据无效。因此采用8b/10b编码以后数据本身就可以提供一定的信号校验功能。需要注意的是,这种校验不是足够可靠,因为理论上还是可能会有几个bit在传输中发生了错误,但 是结果仍然符合8b/10b编码规则和直流平衡原则。因此,很多使用8b/10b编码的总线还 会在上层协议上再做相应的CRC校验(循环冗余校验)。
对于一个理想的方波信号,其上升沿是无限陡的,从频域上看 它是由无限多的奇数次谐波构成的,因此一个理想方波可以认为是无限多奇次正弦谐波 的叠加。
但是对于真实的数字信号来说,其上升沿不是无限陡的,因此其高次谐波的能量会受到 限制。比如图1.3是用同一个时钟芯片分别产生的50MHz和250MHz的时钟信号的频 谱,我们可以看到虽然两种情况下输出时钟频率不一样,但是信号的主要频谱能量都集中在 5GHz以内,并不见得250MHz时钟的频谱分布就一定比50MHz时钟的大5倍。 什么是模拟信号和数字信号是什么。

数字信号的时钟分配(ClockDistribution)
前面讲过,对于数字电路来说,目前绝大部分的场合都是采用同步逻辑电路,而同步逻辑电路中必不可少的就是时钟。数字信号的可靠传输依赖于准确的时钟采样,一般情况下发送端和接收端都需要使用相同频率的工作时钟才可以保证数据不会丢失(有些特殊的应用中收发端可以采用大致相同频率工作时钟,但需要在数据格式或协议层面做些特殊处理)。为了把发送端的时钟信息传递到接收端以进行正确的信号采样,数字总线采用的时钟分配方式大体上可以分为3类,即并行时钟、嵌入式时钟、前向时钟,各有各的应用领域。 数字信号取值是散的,通过数学方法对原有信号处理,编码成二进制信号后,再载波的方式发送编码后的数字流。云南数字信号测试系列
数字信号的预加重(Pre-emphasis);陕西校准数字信号测试
数字信号的时域和频域
数字信号的频率分量可以通过从时域到频域的转换中得到。首先我们要知道时域是真实世界,频域是更好的用于做信号分析的一种数学手段,时域的数字信号可以通过傅里叶变换转变为一个个频率点的正弦波的。这些正弦波就是对应的数字信号的频率分量。假如定义理想方波的边沿时间为0,占空比50%的周期信号,其在傅里叶变换后各频率分量振幅。
可见对于理想方波,其振幅频谱对应的正弦波频率是基频的奇数倍频(在50%的占空比下)。奇次谐波的幅度是按1"下降的(/是频率),也就是-20dB/dec(-20分贝每十倍频)。 陕西校准数字信号测试
深圳市力恩科技有限公司是一家从事实验室配套,误码仪/示波器,矢量网络分析仪,协议分析仪研发、生产、销售及售后的服务型企业。公司坐落在深圳市南山区南头街道南联社区中山园路9号君翔达大厦办公楼A201,成立于2014-04-03。公司通过创新型可持续发展为重心理念,以客户满意为重要标准。主要经营实验室配套,误码仪/示波器,矢量网络分析仪,协议分析仪等产品服务,现在公司拥有一支经验丰富的研发设计团队,对于产品研发和生产要求极为严格,完全按照行业标准研发和生产。我们以客户的需求为基础,在产品设计和研发上面苦下功夫,一份份的不懈努力和付出,打造了克劳德产品。我们从用户角度,对每一款产品进行多方面分析,对每一款产品都精心设计、精心制作和严格检验。深圳市力恩科技有限公司严格规范实验室配套,误码仪/示波器,矢量网络分析仪,协议分析仪产品管理流程,确保公司产品质量的可控可靠。公司拥有销售/售后服务团队,分工明细,服务贴心,为广大用户提供满意的服务。