生物脱氮的基本条件:(1)硝酸盐:硝酸盐的生成和存在是反硝化作用发生的先决条件,必须先将污水中的含氮有机物如蛋白质、氨基酸、尿素、脂类、硝基化合物等转化为硝酸盐氮。(2)不含溶解氧:反应器中的氧都将被有机体优先利用,从而减少反应器能脱氮的亚硝酸盐量,溶解氧超过0.2 mg/L时没有明显脱氮作用。(3)兼性菌团:多数情况下,细菌普遍具有脱氮习性,污水处理的微生物脱氮时在好氧和缺氧条件下反复交替,其中以兼性菌团为主。(4)电子供体:生物脱氮的能量来自脱氮过程中起电子供体作用的碳质有机物,脱氮时污水中有机物必须充足,否则需要投加甲醇、乙醇、乙酸等外部碳源。随着科技的不断进步,新型的脱氮技术不断涌现,为水污染治理提供了新的解决方案。安徽废水脱氮反应
物理脱氮:1、吹脱法,蒸汽吹脱法效率较高,氨氮去除率能达到90%以上,一般应用在炼钢、化肥、石油化工等行业,其优点是可回收利用氨,经过吹脱处理后可回收到氨质量分数达30%以上的氨水。空气吹脱法的效率虽比蒸汽法的低,但能耗低、设备简单、操作方便。在氨氮总量不高的情况下,采用空气吹脱法比较经济,同时可用硫酸作吸收剂吸收吹脱出的氨氮,生成的硫酸铵可制成化肥。2、吸附法,处理低浓度氨氮废水较为理想的是离子交换吸附法,它属于交换吸附方法的一种,利用吸附剂上的可交换离子与废水中的NH4+发生交换并吸附NH3分子以达到去除水中氨的目的,这是一个可逆过程,离子间的浓度差和吸附剂对离子的亲和力为吸附过程提供动力。具有良好吸附性能且常用的吸附剂有:沸石、活性炭、煤炭、离子交换树脂等。广东印染脱氮行价将脱氮工作列入企业生产计划是必要的。
3段改良Bardenpho工艺(或A2/O工艺),测试表明,五段Phoredox工艺并不能将硝酸盐含量降低至零,与头一缺氧区相比,第二缺氧池因为采用内源呼吸反硝化导致单位容积反硝化速率相当低。第二缺氧池的低效促使Simpkins和McLaren(1978)提出,在某些情况下可取消第二缺氧池,适当加大头一缺氧池,以获得较大的反硝化处理效果和较低的回流污泥硝酸盐浓度,即3段改良Bardenpho工艺,也就是目前常用的A2/O工艺。(以上数据只供参考,具体设计请根据水质进行变动。)
近20年来, 对氨氮污水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用较多的技术为:传统生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、膜法等。序批式脱氮工艺(例如CASS),序批式脱氮工艺与A/O工艺相比,其运行方式有所不同,但在脱氮反应机理上基本与A/O生物脱氮工艺一致。序批式工艺为间歇的运行方式,采用一个单独的反应池替代了传统的由多个具有不同功能的反应区组合而成的A/O生物脱氮反应器。序批式脱氮工艺以时间的交替方式实现了缺氧/好氧环境,取代了传统空间上的缺氧/好氧,因其具有简单的结构和灵活的操作方式而倍受研究者的关注和研究。脱氮供应可以提供脱氮设备、药剂等相关产品和服务。
硝化过程的影响因素:1)温度:硝化反应较适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。2)溶解氧:硝化反应必须在好氧条件下进行,溶解氧浓度为0.5~0.7mg/L是硝化菌可以容忍的极限,溶解氧低于2mg/L条件下,氮有可能被完全硝化,但需要较长的污泥停留时间,因此一般应维持混合液的溶解氧浓度在2mg/L以上。3)pH和碱度:硝化菌对pH特别敏感,硝化反应的较佳pH是在7.2~8之间。每硝化1g氨氮大约需要消耗7.14gCaCO3碱度,如果污水没有足够的碱度进行缓冲,硝化反应将导致pH值下降、反应速率减慢。脱氮的原理是将氮气从燃烧过程中去除。湖北废水脱氮碳源
在农业生产中,合理施肥和农田管理有助于减少氮素流失,降低水体脱氮处理的压力。安徽废水脱氮反应
pH值:硝化反应的较佳pH值范围是6.5一7.5,不适宜的pH值会影响反硝化菌的生长速率和反硝化酶的活性。当pH值低于6.0或高于8.5时,反硝化反应将受到强烈抑制。反硝化反应会产生部分碱度,这有助于将pH值保持在所需要的范围内,并补充硝化过程中所消耗的一部分碱度。此外,pH值还影响反硝化的较终产物,pH值>7.3时较终产物是氮气,pH值<7.3时较终产物是N2O。有毒物质:镍浓度大于0.5mg/L,亚硝酸盐氮含量超过30mg/L或盐度高于0.63%时都会抑制反硝化作用。硫酸盐含量过高会导致反硫化的进行,进而影响反硝化的正常进行,钙和氨的浓度过高也会抑制反硝化作用。安徽废水脱氮反应