化学沉淀法(磷酸铵镁沉淀法),化学沉淀法的原理,是向氨氮污水中投加含Mg2+和PO43-的药剂,使污水中的氨氮和磷以鸟粪石(磷酸铵镁)的形式沉淀出来,同时回收污水中的氮和磷。磷酸铵镁沉淀法的pH约为9.0,n(P)∶n(N)∶n(Mg)在1:1:1.2左右,磷酸铵镁沉淀法的脱氮率能维持在较高水平,普遍能够达到90%以上。该方法工艺设计操作相对简单,反应稳定,受外界环境影响小,抗冲击能力强;脱氮率高,效果明显,生成的磷酸铵镁可作为无机复合肥使用,解决了氮的回收和二次污染的问题,具有良好的经济和环境效益。磷酸铵镁沉淀法适用于处理氨氮浓度较高的工业废水。脱氮的可行性需综合考虑经济、社会和环境等因素。超净脱氮常规标准
有些设计人员在设计倒置A2/O工艺时省去了混合液回流,通过增大二沉池的污泥回流来满足反硝化需求。增大污泥回流虽然不改变二沉池的比表面积负荷率,但是在一定程度上降低了二沉池的沉淀时间,不建议采用。厌氧释磷的实际停留时间(含回流量)一般要求在0.5-2h,倒置A2/O虽然满足了硝氮对厌氧释磷的影响,但是需要增加厌氧池的池容,从而满足厌氧释磷实际停留时间的要求,增加了土建成本。同时多点进水需要很好的进行控制,以此来调整厌、缺氧池的碳源配比达到良好的脱氮除磷效果。该工艺适合原水中TN含量比较高的废水,只要缺氧池的容积设计的合理可以完全反硝化,从而为厌氧释磷提供良好的厌氧环境。四川污水脱氮反应在脱氮过程中,需要考虑到水体中其他元素的平衡性。
这些工艺参数只是参考,运行参数需要针对自己的污水厂/污水站的实际情况进行调整,从而达到良好的处理效果。所以,在运行中各位污师需要针对问题进行分析,找到问题的根本所在,而不是盲目的排泥、投加碳源、投加营养、增加/减少曝气等等。在自我分析问题之后可以到污托邦社区或者污托邦群里面进行讨论,而不是出现问题头一时间问别人,每个人运行的污水厂/污水站的情况都不一样,别人给你的只会是他遇到过的情况,但不一定适用于你运营的污水厂,甚至有时候同样一个现象,在不同污水厂发生的机理是完全相反的。
用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果较好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。生物脱氮,污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。含氮有机化合物较终转化为氮气,从污水中去除。印染脱氮技术是处理染料厂废水中氮污染的有效途径。
农业生产方面,反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。农业上常进行中耕松土,以防止反硝化作用。在环境保护方面,反硝化反应和硝化反应一起可以构成不同工艺流程,是生物除氮的主要方法,在全球范围内的污水处理厂中被普遍应用。利用硝化作用和反硝化作用去除有机废水和高含量硝酸盐废水中的氮,来减少排入河流的氮污染和富营养化问题,已是环境学家的共识。利用各种反应器处理城市的或其他废水时,有机废水中的碳源可支持反硝化作用,进行有效的生物脱氮。脱氮的效果和效率会受到天气、水温和pH值等影响。新能源环保脱氮反应
在脱氮过程中,需要密切关注水质变化,确保处理效果达到预期目标。超净脱氮常规标准
同步硝化反硝化,存在有氧情况下的反硝化反应和低氧情况下的硝化反应,硝化过程和反硝化过程通常在一个反应器中进行,这种现象被称为同步硝化反硝化,如流化床反应器、生物转盘、氧化沟等。短程硝化反硝化与全程硝化反硝化相比,可减少25%的硝化需氧量和40%的反硝化碳源,同时可削减底泥产量,进而减少反硝化池容积,在各类脱氮工艺中极具竞争力。此外,亚硝态氮的积累不会抑制氨氧化过程。厌氧氨氧化,在厌氧条件下,微生物直接以NH4+为电子供体,以亚硝酸盐、硝酸盐作为电子受体,将氮化合物转变成N2的过程或利用硝酸盐作为电子受体来氧化氨的过程。超净脱氮常规标准